Document Detail


A systematic study of polarons due to oxygen vacancy formation at the rutile TiO(2)(110) surface by GGA + U and HSE06 methods.
MedLine Citation:
PMID:  23032600     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The polaronic nature of excess electrons accompanying an oxygen vacancy in a TiO(2)(110) surface has been studied by several theoretical approaches. According to previous studies, DFT + U and hybrid functional methods predict different sites of localization of the polarons. In this paper, we conducted a thorough comparison of the results obtained by GGA + U (generalized gradient approximation + Hubbard U) and HSE06 (Heyd-Scuseria-Ernzerhof hybrid functional) approximations. Considering initial symmetry breaking in the geometry optimization process, we show that regardless of the approximations used, electrons localize at two particular subsurface Ti sites in a state with mixed d(x(2)-y(2))/d(z(2)) character in the global coordinate frame with a spatial extent of the order of 7 Å. The lowest state of the polarons is a singlet, but the triplet is only about 0.1 meV higher in energy. Our results agree with previous experiments and calculations, wherever available. We stress that the hybrid functional has been first applied on this surface with a realistic coverage of oxygen vacancies corresponding to the experimental situation (∼12.5%).
Authors:
Taizo Shibuya; Kenji Yasuoka; Susanne Mirbt; Biplab Sanyal
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-03
Journal Detail:
Title:  Journal of physics. Condensed matter : an Institute of Physics journal     Volume:  24     ISSN:  1361-648X     ISO Abbreviation:  J Phys Condens Matter     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101165248     Medline TA:  J Phys Condens Matter     Country:  -    
Other Details:
Languages:  ENG     Pagination:  435504     Citation Subset:  -    
Affiliation:
Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Medical student musculoskeletal education: an institutional survey.
Next Document:  Perspectives on housing among homeless emerging adults.