Document Detail


Eph/ephrinB signalling is involved in the survival of thymic epithelial cells.
MedLine Citation:
PMID:  23146940     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The signals that determine the survival/death of the thymic epithelial cells (TECs) component during embryonic development of the thymus are largely unknown. In this study, we combine different in vivo and in vitro experimental approaches to define the role played by the tyrosine kinase receptors EphB2 and EphB3 and their ligands, ephrinsB, in the survival of embryonic and newborn (NB) TECs. Our results conclude that EphB2 and EphB3 are involved in the control of TEC survival and that the absence of these molecules causes increased apoptotic TEC proportions that result in decreased numbers of thymic cells and a smaller-sized gland. Furthermore, in vitro studies using either EphB2-Fc or ephrinB1-Fc fusion proteins demonstrate that the blockade of Eph/ephrinB signalling increases TEC apoptosis, whereas its activation rescues TECs from cell death. In these assays, both heterotypic thymocyte-TEC and homotypic TEC-TEC interactions are important for Eph/ephrinB-mediated TEC survival.Immunology and Cell Biology advance online publication, 13 November 2012; doi:10.1038/icb.2012.59.
Authors:
Javier García-Ceca; David Alfaro; Sara Montero-Herradón; Agustín G Zapata
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-13
Journal Detail:
Title:  Immunology and cell biology     Volume:  -     ISSN:  1440-1711     ISO Abbreviation:  Immunol. Cell Biol.     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-13     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8706300     Medline TA:  Immunol Cell Biol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  The gating mechanism of the bacterial mechanosensitive channel MscL revealed by molecular dynamics s...
Next Document:  The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection ...