Document Detail

The role of RhoA/Rho kinase pathway in endothelial dysfunction.
Jump to Full Text
MedLine Citation:
PMID:  21264179     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Endothelial dysfunction is a key event in the development of vascular disease, and it precedes clinically obvious vascular pathology. Abnormal activation of the RhoA/Rho kinase (ROCK) pathway has been found to elevate vascular tone through unbalancing the production of vasodilating and vasoconstricting substances. Inhibition of the RhoA/ROCK pathway can prevent endothelial dysfunction in a variety of pathological conditions. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of the ROCK pathway and its roles in endothelial dysfunction.
Lin Yao; Maritza J Romero; Haroldo A Toque; Guang Yang; Ruth B Caldwell; R William Caldwell
Related Documents :
7591639 - Assessment of f-actin organization and apical-basal polarity during in vivo cat endothe...
18449209 - Skin pathology induced by snake venom metalloproteinase: acute damage, revascularizatio...
17647259 - Wound repair and proliferation of bronchial epithelial cells regulated by ctnnal1.
19631569 - Morphology of lymphatic regeneration in rat incision wound healing in comparison with v...
19783739 - Necl2 regulates epidermal adhesion and wound repair.
8944729 - Soluble and insoluble fibronectin increases alveolar epithelial wound healing in vitro.
23322569 - Resistance of corneal rfuva–cross-linked collagens and small leucine-rich proteoglyca...
21478669 - The diverse roles of rac signaling in tumorigenesis.
23416899 - Prostate carcinoma cell growth-inhibiting hydrogel supports axonal regeneration in vitro.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of cardiovascular disease research     Volume:  1     ISSN:  0976-2833     ISO Abbreviation:  J Cardiovasc Dis Res     Publication Date:  2010 Oct 
Date Detail:
Created Date:  2011-01-25     Completed Date:  2011-07-14     Revised Date:  2013-05-29    
Medline Journal Info:
Nlm Unique ID:  101536738     Medline TA:  J Cardiovasc Dis Res     Country:  India    
Other Details:
Languages:  eng     Pagination:  165-70     Citation Subset:  -    
Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Cardiovasc Dis Res
Journal ID (publisher-id): JCDR
ISSN: 0975-3583
ISSN: 0976-2833
Publisher: Medknow Publications, India
Article Information
© Journal of Cardiovascular Disease Research
Print publication date: Season: Oct–Dec Year: 2010
Volume: 1 Issue: 4
First Page: 165 Last Page: 170
ID: 3023892
PubMed Id: 21264179
Publisher Id: JCDR-1-165
DOI: 10.4103/0975-3583.74258

The role of RhoA/Rho kinase pathway in endothelial dysfunction
Lin YaoAF0001
Maritza J. RomeroAF0001
Haroldo A. ToqueAF0001
Guang Yang1
Ruth B Caldwell1
R. William CaldwellAF0001
Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, USA
1Department of Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
Correspondence: Address for correspondence: Dr. R. William Caldwell, Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912, USA. E-mail:


Vascular disease, particularly atherosclerosis is a major cause of disability and death in patients with diabetes mellitus. The pathophysiology of vascular disease in diabetes involves abnormal function of the vascular endothelial and smooth muscle cells (SMC) as well as platelets. Endothelial dysfunction may be a critical and initiating factor in the development of diabetic vascular disease.[1, 2] The broad definition of endothelial dysfunction, a systemic pathological state of the endothelium (the inner lining of the blood vessels), is an imbalance between endothelium-derived relaxing factors (EDRF) e.g. nitric oxide (NO), and prostacyclin and endothelium-derived constricting factors (EDCF) e.g. thromboxane A2 (TxA2), prostaglandin H2 (PGH2), endothelin-1 and angiotensin II.[3]

The small GTPase RhoA and its downstream target Rho kinase (ROCK) regulate cellular adherence, migration, and proliferation through control of the actin–cytoskeletal assembly and cell contraction.[4] Since their discovery in 1996, ROCKs have been extensively studied. Much of the work has focused on the role of the RhoA/ROCK pathway in endothelial function. For example, among Rho GTPase family members, RhoA is noted as having a critical role for T cell transendothelial migration.[5] The proinflammatory lipid mediator, lysophosphatidic acid (LPA), has been reported to activate ROCK, p38, JNK, and NF-kappa β pathways in human endothelial cells (EC).[6] Inhibition of ROCK can prevent thrombin-induced intercellular adhesion molecule 1 (ICAM-1) expression and can further inhibit nuclear factor (NF)-kappa β activity[7] and tissue factor expression in EC, indicating that the RhoA/ROCK pathway is involved in the mechanism of thrombus formation.[8] Also, RhoA/ROCK activation by C-reactive protein has been reported to enhance endothelial plasminogen activator inhibitor-1 expression, which may result in atherothrombogenesis.[9] Basal Rho kinase activity is essential for the regulation of endothelial barrier integrity.[10] However, overactivation of RhoA/ROCK by disturbed flow can induce phosphorylation of LIM kinase 2 and cytoskeletal rearrangement, resulting in barrier dysfunction in vascular EC.[11]

RhoA/ROCK is also involved in endothelial NO synthase (eNOS) function, as their activation decreases eNOS expression by reducing the eNOS mRNA stability.[12] Also, use of a ROCK inhibitor can reduce vasoconstriction caused by acetylcholine (Ach) in vessels with an impaired endothelium.[13] Inhibition of the RhoA/ROCK pathway may have significant clinical implications. In this review, we describe the current understanding of ROCK signaling and its role in vascular endothelial dysfunction.


ROCK is a serine/threonine kinase with a molecular mass of ~160 kDa, which has been identified as the first downstream target of the small GTP-binding protein RhoA.[14, 15] ROCK mediates RhoA-induced actin–cytoskeletal changes through phosphorylating the regulatory myosin-binding subunit (MBS) of the myosin light chain (MLC) phosphatase. Phosphorylated MBS inhibits the activity of MLC phosphatase and, thereby, promotes MLC phosphorylation and actomyosin contractility.[1618]

Two ROCK isoforms have been identified in the mammalian system. ROCK1 (ROKβ or p160ROCK) is located on chromosome 18 and encodes a 1354-amino acid protein.[19, 20] ROCK2 (ROKα or Rho-kinase) is located on chromosome 12 and contains 1388 amino acids.[14, 21, 22] ROCK1 and ROCK2 share an overall 65% homology in amino acid sequence and 92% homology in their kinase domains.[23]

ROCK1 and ROCK2 are ubiquitously expressed in murine tissues from early embryonic development to adulthood. ROCK1 is widely and highly expressed in most tissues except in the brain and muscle, whereas ROCK2 is most highly expressed in muscle, brain, heart, lung, and placenta tissues.[20, 22, 24] Both ROCK1 and ROCK2 are expressed in vascular EC and SMC.[2427] Relatively few studies have addressed the regulation of ROCK isoform expression. Angiotensin II (via type 1 receptor) and IL-1 beta upregulate both isoforms of ROCK at the mRNA and protein level in human coronary vascular SMCs. This is mediated by protein kinase C and NF-kappa β.[28] Compensation of ROCK1 for the loss of ROCK2 has not been reported in the ROCK2-deficient mouse.[29] However, in vascular SMC, silencing of either ROCK isoform leads to an increased protein expression of the other isoform, suggesting that the expression level of the ROCK isoforms is tightly controlled and interrelated.[30]

Although ROCK1 and ROCK2 are ubiquitously expressed and highly homologous, several mechanisms have been reported that differentially regulate ROCK isoform activities. For example, the overexpression of ROCK1 and ROCK2 can both increase MLC phosphorylation, but through different mechanisms.[31] ROCK2, but not ROCK1, binds directly to the MBS of MLC phosphatase and plays a predominant role in vascular SMC contractility.[32] ROCK2 is the dominant isoform driving LPA-mediated activation of NF-kappa β and ensuing transcriptional upregulation of ICAM-1 and vascular cell adhesion molecule-1 mRNA and protein in human umbilical vein EC.[33] However, ROCK1, but not ROCK2, knockout mice have a substantially reduced vascular inflammation and neointima formation after flow cessation-induced vascular injury in the ligated carotid artery.[34]

Bioavailability of nitric oxide and RhoA/Rho kinase

A hallmark of endothelial dysfunction is reduced bioavailability of NO, which may be caused by reduced expression of eNOS, impairment of eNOS activation, or inactivation of NO by oxidative stress. Accumulating evidence indicates that the expression and activity of eNOS is regulated by the RhoA/ROCK pathway. For example, activation of the RhoA/ROCK pathway significantly inhibits endothelial NO synthase expression and phosphorylation (Ser1177) in the mesenteric arteries of hypertensive profilin1 transgenic mice.[35] Thrombin is reported to decrease the eNOS mRNA level by shortening the half-life of eNOS mRNA via activation of RhoA and ROCK in human EC.[36] Consequently, ROCK inhibitors or statins, which inhibit RhoA activity, can increase the eNOS mRNA half-life and upregulate eNOS expression in animal and human vascular disease. The ROCK inhibitor Y-27632 increased normoxia-induced NO production in the pulmonary artery of late-gestation ovine fetuses infused with nitro-L-arginine.[37] Prolongation of eNOS mRNA half-life by statins is reversed by geranylgeranyl pyrophosphate, which causes the isoprenylation and activation of RhoA GTPase.[12]

Regulation of signal transduction

There are many signaling molecules involved in the pathogenesis of endothelial dysfunction via impairment of NO bioavailability. Some of the signaling molecules have been reported to have a link with the RhoA/ROCK pathway. These are phosphoinositide 3-kinase (PI3K)/Akt, reactive oxygen species (ROS), and arginase.

PI3K/Akt and RhoA/ROCK pathway

Akt (protein kinase B) is a serine/threonine protein kinase, which is the key downstream effector of PI3K. PI3K-dependent Akt activation can be regulated through the tumor suppressor phosphatase and tensin homolog (PTEN), which works essentially as the opposite of PI3K. Akt can directly phosphorylate eNOS on serine 1179 (based on the bovine eNOS sequence and equivalent to human eNOS-serine 1177) and activate the enzyme, leading to NO production.[38] Studies have shown that a crosstalk between RhoA–ROCK and Akt regulates eNOS phosphorylation independent of the RhoA/ROCK actions on the downregulation of eNOS expression. The active RhoA/ROCK pathway not only regulates eNOS gene expression but also inhibits eNOS phosphorylation at Ser-1177 and cellular NO production via suppression of Akt activation in human umbilical vein EC.[39] Furthermore, inhibition of RhoA or ROCK isoforms leads to the rapid activation of the PI3K/Akt pathway and phosphorylation of eNOS.[39, 40] RhoA and ROCK can directly phosphorylate and activate PTEN,[41, 42] suggesting that PTEN may be also involved in NO regulation via RhoA/ROCK and PI3K/Akt complex.

ROS, arginase, and RhoA/ROCK pathway

It is well known that ROS reduce the bioavailability of NO. The reaction between superoxide and NO forms peroxynitrite, which oxidizes and decreases the level of tetrahydrobiopterin (BH4), a cofactor required for eNOS activity and NO synthesis. Moreover, increased peroxynitrite positively correlates with a significant upregulation of the active RhoA in models of experimental diabetes.[43] RhoA plays a significant role in endothelial permeability, EC migration, and angiogenesis.[44, 45] One of the Rho guanosine nucleotide exchange factors (Rho GEF), p115-Rho GEF, is reportedly involved in mediating thrombin-induced pulmonary EC dysfunction,[46] and ROS have been shown to induce vascular contraction through activation of Rho/Rho kinase.[47] Our previous studies demonstrated that peroxynitrite can suppress eNOS expression via activation of RhoA and hence can cause vascular dysfunction.[48]

In addition, elevated arginase activity also limits NO availability. Arginase is a hydrolytic enzyme that converts L-arginine into urea and ornithine. Thus, enhanced arginase activity can decrease the tissue and cellular L-arginine availability to eNOS,[49] which leads to a decrease in NO production and increased superoxide generation due to uncoupled eNOS.[43, 50] Arginase-induced endothelial dysfunction initiates a feed-forward cycle of diminished NO levels and further oxidative stress.[43] Our lab previously showed that diabetes and high glucose increase the activity of arginase through enhanced RhoA/ROCK function.[43] Significantly greater RhoA and arginase activity has also been observed in inflammatory bowel disease and TNF-α/lipopolysaccharide-activated human EC.[26] Elevated arginase activity/expression is blocked by the inhibition of RhoA or ROCK, suggesting that activation of the RhoA/ROCK pathway is a critical step toward elevated arginase activity and expression in the vasculature.[26, 27, 43]


In vascular diseases, endothelial dysfunction is also due in part to the release of EDCF, which counteracts the vasodilator action of NO or PGI2. The vessel contraction mediated by EDCF is widely called endothelium-dependent contraction in the scientific literature. Although this term is somewhat imprecise, it has become widely used.

In blood vessels, endothelium-dependent contraction to Ach is not observed under normal physiological conditions. However, it is observed under pathological conditions, such as in hypertension and in diabetes, in which endothelial function is markedly impaired.[5154] TxA2 and/or PGH2, synthesized by cyclooxygenase (COX), mediate endothelium-dependent contraction[5560] by activating thromboxane–prostanoid (TP) receptors on vascular SMCs.[53, 61, 62] One of the signaling molecules activated by TP receptor in smooth muscle is Rho kinase.[63] Activated RhoA and ROCK result in the inhibition of MLC phosphatase, which decreases the dephosphorylation of the regulatory MLC. The altered balance of MLC induces contraction of the vascular smooth muscle (VSM) layer.[64]

In the presence of a pathologic vascular endothelial layer, EDCFs may prevail over EDRFs, subsequently inducing activation of the RhoA/ROCK pathway in the VSM layer, resulting in enhanced vasocontractile activity. In clinical studies, the intraarterial infusion of the ROCK inhibitor fasudil lowers blood pressure, and this decrement is higher in hypertensive patients than in normotensive subjects, suggesting that ROCK contributes to endothelium-dependent contraction to Ach.[65] In carotid arteries of spontaneously hypertensive rats (SHR), inhibition of ROCK caused a dose-dependent reduction in the endothelium-dependent contraction to Ach.[13] Also, the contractions induced in the aorta of SHR and Wistar Kyoto rats by Ach can be abolished by inhibitors of ROCK, either Y27632 or HA1077 (fasudil).[13] Furthermore, RhoA–ROCK has been reported to mediate the enhanced endoperoxide-dependent vascular contraction characteristic of hypertension.[13] These findings suggest that inhibition of ROCK can reduce the EDCF-mediated responses and consequently contribute to the lowering of arterial blood pressure in vascular disease.

RhoA/Rho kinase inhibitors

Although an increasing number of reports show that ROCK plays an important role in endothelial dysfunction, more insights into the molecular mechanisms that contribute to increased ROCK activity or the downstream targets for ROCK are needed. Determination of the precise role of the two ROCK isoforms is limited by the lack of specific and selective pharmacological inhibitors currently available. Statins are indirect inhibitors of the RhoA/ROCK pathway, which act by decreasing the synthesis of isoprenoids. An intravenous injection of pravastatin prevents impaired NO-dependent vasodilation by blocking the full activation of unprocessed RhoA and Rac1 and the downregulation of Akt/eNOS pathways in Wistar and SHR.[8, 66] Fasudil was the first ROCK inhibitor approved for clinical use, which inhibits ROCK by competing with ATP for binding to the kinase,[67, 68] but it also inhibits other kinases. Hydroxyfasudil (HA-1100), which is an active metabolite, is highly selective for ROCKs. When compared with protein kinase A, the IC50 value is approximately five-fold lower for fasudil and 50-fold lower for hydroxufasudil.[23] Y27632 is another nonspecific inhibitor of both ROCK isoforms by competing with ATP for binding the kinase.[69] At higher concentrations, it can also inhibit Rho-dependent kinase C and A.[68] Recently, two novel compounds, GSK2699624 and SB772077B, were reported to have higher potency than either Y27632 or fasudil, especially in inhibiting ROCK1.[70] More highly specific ROCK-2 inhibitors, such as SR-715 and SR-899, have also been developed.[71] More interest within the pharmaceutical industry will accelerate the development of selective ROCK inhibitors.


There is no doubt that ROCK1 and ROCK2 knockout mice are the most accurate and specific way to investigate the in vivo distribution/function of ROCK isoforms. Complete loss of ROCK1 in mice results in the eyelids being open at birth and an intestinal protrusion phenotype,[72] whereas loss of ROCK2 results in placental dysfunction leading to intrauterine growth retardation and about 90% fetal death.[29] However, both groups of haploinsufficient ROCK mice develop normally and are fertile. Indeed, developing studies with ROCK-deficient mice would have the greatest chance of increasing our understanding of the function of specific ROCK isoforms in various diseases. Better yet, development of conditional knockouts for ROCK would be of great value.


There is growing evidence that the RhoA/ROCK pathway has an important pathophysiological role in vascular endothelial dysfunction. Inhibition of ROCK may be an attractive therapeutic target for preventing endothelial dysfunction [Figure 1]. However, a better understanding of the physiological role of each ROCK isoform in the cardiovascular system is needed, and can be resolved by the development of isoform-specific inhibitors and extensive use of ROCK-deficient mice.


Source of Support: Nil

Conflict of Interest: None declared

1. John S,Schmieder RE. Impaired endothelial function in arterial hypertension and hypercholesterolemia: Potential mechanisms and differencesJ HypertensYear: 2000183637410779084
2. Luscher TF,Creager MA,Beckman JA,Cosentino F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part IICirculationYear: 200310816556114517152
3. Deanfield J,Donald A,Ferri C,Giannattasio C,Halcox J,Halligan S,et al. Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: A statement by the Working Group on Endothelin and Endothelial Factors of the European Society of HypertensionJ HypertensYear: 20052371715643116
4. Riento K,Ridley AJ. Rocks: multifunctional kinases in cell behaviourNat Rev Mol Cell BiolYear: 200344465612778124
5. Heasman SJ,Carlin LM,Cox S,Ng T,Ridley AJ. Coordinated RhoA signaling at the leading edge and uropod is required for T cell transendothelial migrationJ Cell BiolYear: 20101905536320733052
6. Shimada H,Rajagopalan LE. Rho-kinase mediates lysophosphatidic acid-induced IL-8 and MCP-1 production via p38 and JNK pathways in human endothelial cellsFEBS LettYear: 201058428273220434448
7. Anwar KN,Fazal F,Malik AB,Rahman A. RhoA/Rho-associated kinase pathway selectively regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via activation of I kappa B kinase beta and phosphorylation of RelA/p65J ImmunolYear: 200417369657215557193
8. Eto M,Kozai T,Cosentino F,Joch H,Luscher TF. Statin prevents tissue factor expression in human endothelial cells: Role of Rho/Rho-kinase and Akt pathwaysCirculationYear: 20021051756911956113
9. Nakakuki T,Ito M,Iwasaki H,Kureishi Y,Okamoto R,Moriki N,et al. Rho/Rho-kinase pathway contributes to C-reactive protein-induced plasminogen activator inhibitor-1 expression in endothelial cellsArterioscler Thromb Vasc BiolYear: 20052520889316123329
10. van Nieuw Amerongen GP,Beckers CM,Achekar ID,Zeeman S,Musters RJ,van Hinsbergh VW. Involvement of Rho kinase in endothelial barrier maintenanceArterioscler Thromb Vasc BiolYear: 2007272332917761936
11. Miyazaki T,Honda K,Ohata H. m-Calpain antagonizes RhoA overactivation and endothelial barrier dysfunction under disturbed shear conditionsCardiovasc ResYear: 2010855304119752040
12. Laufs U,Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPaseJ Biol ChemYear: 199827324266719727051
13. Denniss SG,Jeffery AJ,Rush JW. RhoA-Rho kinase signaling mediates endothelium- and endoperoxide-dependent contractile activities characteristic of hypertensive vascular dysfunctionAm J Physiol Heart Circ PhysiolYear: 2010298H139140520154258
14. Leung T,Manser E,Tan L,Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranesJ Biol ChemYear: 19952702905147493923
15. Amano M,Ito M,Kimura K,Fukata Y,Chihara K,Nakano T,et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase)J Biol ChemYear: 19962712024698702756
16. Somlyo AV,Bradshaw D,Ramos S,Murphy C,Myers CE,Somlyo AP. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cellsBiochem Biophys Res CommunYear: 2000269652910720471
17. Kimura K,Ito M,Amano M,Chihara K,Fukata Y,Nakafuku M,et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase)ScienceYear: 199627324588662509
18. Kawano Y,Fukata Y,Oshiro N,Amano M,Nakamura T,Ito M,et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivoJ Cell BiolYear: 199914710233810579722
19. Ishizaki T,Maekawa M,Fujisawa K,Okawa K,Iwamatsu A,Fujita A,et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinaseEMBO JYear: 1996151885938617235
20. Leung T,Chen XQ,Manser E,Lim L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeletonMol Cell BiolYear: 1996165313278816443
21. Matsui T,Amano M,Yamamoto T,Chihara K,Nakafuku M,Ito M,et al. Rho-associated kinase: A novel serine/threonine kinase, as a putative target for small GTP binding protein RhoEMBO JYear: 1996152208168641286
22. Nakagawa O,Fujisawa K,Ishizaki T,Saito Y,Nakao K,Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in miceFEBS LettYear: 1996392189938772201
23. Liao JK,Seto M,Noma K. Rho kinase (ROCK) inhibitorsJ Cardiovasc PharmacolYear: 200750172417666911
24. Nuno DW,Harrod JS,Lamping KG. Sex-dependent differences in Rho activation contribute to contractile dysfunction in type 2 diabetic miceAm J Physiol Heart Circ PhysiolYear: 2009297H14697719666843
25. Wibberley A,Chen Z,Hu E,Hieble JP,Westfall TD. Expression and functional role of Rho-kinase in rat urinary bladder smooth muscleBr J PharmacolYear: 20031387576612642376
26. Horowitz S,Binion DG,Nelson VM,Kanaa Y,Javadi P,Lazarova Z,et al. Increased arginase activity and endothelial dysfunction in human inflammatory bowel diseaseAm J Physiol Gastrointest Liver PhysiolYear: 2007292G13233617218473
27. Ming XF,Barandier C,Viswambharan H,Kwak BR,Mach F,Mazzolai L,et al. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: Implications for atherosclerotic endothelial dysfunctionCirculationYear: 200411037081415569838
28. Hiroki J,Shimokawa H,Higashi M,Morikawa K,Kandabashi T,Kawamura N,et al. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cellsJ Mol Cell CardiolYear: 2004375374615276023
29. Thumkeo D,Keel J,Ishizaki T,Hirose M,Nonomura K,Oshima H,et al. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal deathMol Cell BiolYear: 20032350435512832488
30. Nunes KP,Rigsby CS,Webb RC. RhoA/Rho-kinase and vascular diseases: What is the link?Cell Mol Life SciYear: 20106738233620668910
31. Yoneda A,Multhaupt HA,Couchman JR. The Rho kinases I and II regulate different aspects of myosin II activityJ Cell BiolYear: 20051704435316043513
32. Wang Y,Zheng XR,Riddick N,Bryden M,Baur W,Zhang X,et al. ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cellsCirc ResYear: 20091045314019131646
33. Shimada H,Rajagopalan LE. Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65J Biol Chem Apr2851253642
34. Noma K,Rikitake Y,Oyama N,Yan G,Alcaide P,Liu PY,et al. ROCK1 mediates leukocyte recruitment and neointima formation following vascular injuryJ Clin InvestYear: 200811816324418414683
35. Hassona MD,Abouelnaga ZA,Elnakish MT,Awad MM,Alhaj M,Goldschmidt-Clermont PJ,et al. Vascular hypertrophy-associated hypertension of profilin1 transgenic mouse model leads to functional remodeling of peripheral arteriesAm J Physiol Heart Circ PhysiolYear: 2010298H21122020400688
36. Eto M,Barandier C,Rathgeb L,Kozai T,Joch H,Yang Z,et al. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways: Role of Rho/ROCK and mitogen-activated protein kinaseCirc ResYear: 2001895839011577023
37. Alvira CM,Sukovich DJ,Lyu SC,Cornfield DN. Rho kinase modulates postnatal adaptation of the pulmonary circulation through separate effects on pulmonary artery endothelial and smooth muscle cellsAm J Physiol Lung Cell Mol PhysiolYear: 201013126
38. Fulton D,Gratton JP,McCabe TJ,Fontana J,Fujio Y,Walsh K,et al. Regulation of endothelium-derived nitric oxide production by the protein kinase AktNatureYear: 199939959760110376602
39. Ming XF,Viswambharan H,Barandier C,Ruffieux J,Kaibuchi K,Rusconi S,et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cellsMol Cell BiolYear: 20022284677712446767
40. Wolfrum S,Dendorfer A,Rikitake Y,Stalker TJ,Gong Y,Scalia R,et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protectionArterioscler Thromb Vasc BiolYear: 2004241842715319269
41. Li Z,Dong X,Wang Z,Liu W,Deng N,Ding Y,et al. Regulation of PTEN by Rho small GTPasesNat Cell BiolYear: 2005739940415793569
42. Meili R,Sasaki AT,Firtel RA. Rho Rocks PTENNat Cell BiolYear: 20057334515803130
43. Romero MJ,Platt DH,Tawfik HE,Labazi M,El-Remessy AB,Bartoli M,et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activityCirc ResYear: 20081029510217967788
44. Gavard J,Gutkind JS. Protein kinase C-related kinase and ROCK are required for thrombin-induced endothelial cell permeability downstream from Galpha12/13 and Galpha11/qJ Biol ChemYear: 2008283298889618713748
45. Holinstat M,Mehta D,Kozasa T,Minshall RD,Malik AB. Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangementJ Biol ChemYear: 200327828793812754211
46. Birukova AA,Smurova K,Birukov KG,Kaibuchi K,Garcia JG,Verin AD. Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunctionMicrovasc ResYear: 200467647714709404
47. Jin L,Ying Z,Webb RC. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aortaAm J Physiol Heart Circ PhysiolYear: 2004287H149550015371261
48. El-Remessy AB,Tawfik HE,Matragoon S,Pillai B,Caldwell RB,Caldwell RW. Peroxynitrite mediates diabetes-induced endothelial dysfunction: Possible role of rho kinase activation. Exp Diabetes Res 2010; Epub NovExp Diabetes ResYear: 2010247861 Epub Nov.1. 21052489
49. Berkowitz DE,White R,Li D,Minhas KM,Cernetich A,Kim S,et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vesselsCirculationYear: 20031082000614517171
50. Kaesemeyer WH,Ogonowski AA,Jin L,Caldwell RB,Caldwell RW. Endothelial nitric oxide synthase is a site of superoxide synthesis in endothelial cells treated with glyceryl trinitrateBr J PharmacolYear: 200013110192311053225
51. Luscher TF,Vanhoutte PM. Endothelium-dependent responses to platelets and serotonin in spontaneously hypertensive ratsHypertensionYear: 19868II55603487506
52. Shimizu K,Muramatsu M,Kakegawa Y,Asano H,Toki Y,Miyazaki Y,et al. Role of prostaglandin H2 as an endothelium-derived contracting factor in diabetic stateDiabetesYear: 1993421246528349035
53. Vanhoutte PM,Feletou M,Taddei S. Endothelium-dependent contractions in hypertensionBr J PharmacolYear: 20051444495815655530
54. Zhou MS,Nishida Y,Chen QH,Kosaka H. Endothelium-derived contracting factor in carotid artery of hypertensive Dahl ratsHypertensionYear: 199934394310406821
55. Furchgott RF,Vanhoutte PM. Endothelium-derived relaxing and contracting factorsFASEB JYear: 198932007182545495
56. Ihara E,Hirano K,Derkach DN,Nishimura J,Nawata H,Kanaide H. The mechanism of bradykinin-induced endothelium-dependent contraction and relaxation in the porcine interlobar renal arteryBr J PharmacolYear: 20001299435210696094
57. Ihara E,Hirano K,Nishimura J,Nawata H,Kanaide H. Thapsigargin-induced endothelium-dependent triphasic regulation of vascular tone in the porcine renal arteryBr J PharmacolYear: 19991286899910516650
58. Katusic ZS,Shepherd JT. Endothelium-derived vasoactive factors: II, Endothelium-dependent contractionHypertensionYear: 199118III86921937691
59. Katusic ZS,Vanhoutte PM. Anoxic contractions in isolated canine cerebral arteries: Contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entryJ Cardiovasc PharmacolYear: 19868S971012433536
60. Koga T,Takata Y,Kobayashi K,Takishita S,Yamashita Y,Fujishima M. Age and hypertension promote endothelium-dependent contractions to acetylcholine in the aorta of the ratHypertensionYear: 19891454282807516
61. Yang D,Gluais P,Zhang JN,Vanhoutte PM,Feletou M. Endothelium-dependent contractions to acetylcholine, ATP and the calcium ionophore A 23187 in aortas from spontaneously hypertensive and normotensive ratsFundam Clin PharmacolYear: 200418321615147283
62. Huang JS,Ramamurthy SK,Lin X,Le Breton GC. Cell signalling through thromboxane A2 receptorsCell SignalYear: 2004165213314751539
63. Somlyo AP,Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin IIJ PhysiolYear: 20005221778510639096
64. Somlyo AP,Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatasePhysiol RevYear: 20038313255814506307
65. Masumoto A,Hirooka Y,Shimokawa H,Hironaga K,Setoguchi S,Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humansHypertensionYear: 20013813071011751708
66. Ohkawara H,Ishibashi T,Saitoh S,et al. Preventive effects of pravastatin on thrombin-triggered vascular responses via Akt/eNOS and RhoA/Rac1 pathways in vivoCardiovasc ResYear: 20108849250120628008
67. Asano T,Suzuki T,Tsuchiya M,Satoh S,Ikegaki I,Shibuya M,et al. Vasodilator actions of HA1077 in vitro and in vivo putatively mediated by the inhibition of protein kinaseBr J PharmacolYear: 19899810911002611484
68. Davies SP,Reddy H,Caivano M,Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitorsBiochem JYear: 20003519510510998351
69. Ishizaki T,Uehata M,Tamechika I,Keel J,Nonomura K,Maekawa M,et al. Pharmacological properties of Y-27632: A specific inhibitor of rho-associated kinasesMol PharmacolYear: 2000579768310779382
70. Doe C,Bentley R,Behm DJ,Lafferty R,Stavenger R,Jung D,et al. Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activitiesJ Pharmacol Exp TherYear: 2007320899817018693
71. Feng Y,Cameron MD,Frackowiak B,Griffin E,Lin L,Ruiz C,et al. Structure-activity relationships, and drug metabolism and pharmacokinetic properties for indazole piperazine and indazole piperidine inhibitors of ROCK-IIBioorg Med Chem LettYear: 20071723556017368019
72. Shimizu Y,Thumkeo D,Keel J,Ishizaki T,Oshima H,Oshima M,et al. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundlesJ Cell BiolYear: 20051689415315753128


[Figure ID: F0001]
Figure 1 

Sustained vascular endothelial dysfunction, defi ned as an imbalance between endothelium-derived relaxing factors (EDRF) and endothelium-derived constricting factors, is induced by various factors (reactive oxygen species, ang II, thrombin, TNFα, lysophosphatidic acid), which lead to vascular disease. The actions of these vascular insult factors observed in diabetes and many other vascular diseases involve abnormal function of endothelial cells and smooth muscle cells (SMC) with altered vascular contraction through RhoA/ Rho kinase (ROCK) pathway activation. This ultimately leads to endothelial barrier dysfunction/edema and enhanced SMC contractility and hypertension. In addition, the RhoA/ROCK pathway plays a central role in impaired production of the EDRF nitric oxide due to multiple actions on constitutive endothelial NO synthase (eNOS). This occurs by reducing PI3K/Akt activation and subsequent reduction of eNOS phosphorylation and downregulation of eNOS mRNA stability. Additionally, activation of the RhoA/ROCK pathway causes elevation of arginase activity/expression, which results in limited availability of the substrate L-arginine for eNOS function. RhoA/ROCK pathway has also been also associated with the mechanism of thrombus formation and vascular infl ammation

Article Categories:
  • Invited Review

Keywords: Endothelial dysfunction, Rho kinase, nitric oxide, endothelium-dependent contractions.

Previous Document:  Esophagobronchial fistula - A rare complication of aluminum phosphide poisoning.
Next Document:  Red wine: A drink to your heart.