Document Detail


A real-time electrical impedance tomography system for clinical use--design and preliminary results.
MedLine Citation:
PMID:  7868140     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
An instrument is described which produces images of the electrical impedance distribution within the body at a rate of 25 frames per second, allowing lung ventilation and lung perfusion to be observed in real time. The instrument makes impedance measurements using an array of 16 electrodes on the surface of the body, and reconstructs the images using a weighted backprojection technique. The design of the data acquisition electronics and the reconstruction and display processor are described. Some preliminary in vitro and in vivo results from the system are presented.
Authors:
R W Smith; I L Freeston; B H Brown
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  IEEE transactions on bio-medical engineering     Volume:  42     ISSN:  0018-9294     ISO Abbreviation:  IEEE Trans Biomed Eng     Publication Date:  1995 Feb 
Date Detail:
Created Date:  1995-03-30     Completed Date:  1995-03-30     Revised Date:  2009-11-11    
Medline Journal Info:
Nlm Unique ID:  0012737     Medline TA:  IEEE Trans Biomed Eng     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  133-40     Citation Subset:  IM    
Affiliation:
Department of Electronic and Electrical Engineering, University of Sheffield, U.K.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Algorithms
Calibration
Computer Systems
Electric Impedance*
Electrodes
Equipment Design
Humans
Image Processing, Computer-Assisted / methods
Lung / blood supply
Systole / physiology
Tomography / instrumentation*

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis.
Next Document:  Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models.