Document Detail

A randomised, controlled study of small intestinal motility in patients treated with sacral nerve stimulation for irritable bowel syndrome.
Jump to Full Text
MedLine Citation:
PMID:  24965754     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
BACKGROUND: Irritable bowel syndrome (IBS) is among the most common gastrointestinal disorders worldwide. In selected patients with severe diarrhoea-predominant or mixed IBS subtypes sacral nerve stimulation (SNS) alleviates IBS-specific symptoms and improves quality of life. The mode of action, however, remains unknown. The present study aimed to evaluate the effect of SNS on small intestinal motility in IBS patients.
METHODS: Twenty patients treated with SNS for severe diarrhoea-predominant or mixed IBS were included in a randomised, controlled, crossover study. The neurostimulator was turned ON or OFF for the first one month and then to the opposite setting for the next month. Gastrointestinal transit patterns were investigated with the Motility Tracking System-1 (MTS-1) at the end of each the ON and OFF period. Primary endpoint was change in the velocity of the magnetic pill within the small intestine. Statistical testing was performed with Wilcoxon's rank sum test and Fisher's exact test.
RESULTS: The median velocity of the magnetic pill through the small intestine in the fasting state was not significantly different between periods with and without SNS (Group ON-OFF: median change 0 m/h (range -1.07, 0.63), Group OFF-ON: median change 0.27 m/h (range -0.59, 1.12)) (p = 0.25). Neither, was the median velocity of the magnetic pill through the small intestine in the postprandial state significantly different between periods with and without SNS (Group ON-OFF: median change -0.13 m/h (range -0.46, 0.23), Group OFF-ON: median change 0.015 m/h (range -0.48, 0.59)) (p = 0.14).
CONCLUSION: Even though SNS may reduce symptoms of diarrhoea-predominant and mixed IBS, it has no detectable effect on small intestinal transit patterns.Trial registration: Clinical.trials.gov, (NCT00919672).
Authors:
Janne Fassov; Lilli Lundby; Jonas Worsøe; Steen Buntzen; Søren Laurberg; Klaus Krogh
Related Documents :
24893354 - Optical quality and intraocular scattering after femtosecond laser small incision lenti...
24674084 - Six sigma tools for a patient safety-oriented, quality-checklist driven radiation medic...
23105124 - Comparison of a powered bone marrow biopsy device with a manual system: results of a pr...
20091534 - Enteral versus parenteral nutrition for acute pancreatitis.
1015234 - Management of potentially fatal alcohol intoxication.
25169014 - Selection for atrial fibrillation ablation: importance of diastolic function grading.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-6-25
Journal Detail:
Title:  BMC gastroenterology     Volume:  14     ISSN:  1471-230X     ISO Abbreviation:  BMC Gastroenterol     Publication Date:  2014 Jun 
Date Detail:
Created Date:  2014-6-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100968547     Medline TA:  BMC Gastroenterol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  111     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BMC Gastroenterol
Journal ID (iso-abbrev): BMC Gastroenterol
ISSN: 1471-230X
Publisher: BioMed Central
Article Information
Download PDF
Copyright © 2014 Fassov et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 6 Month: 12 Year: 2013
Accepted Day: 2 Month: 6 Year: 2014
collection publication date: Year: 2014
Electronic publication date: Day: 25 Month: 6 Year: 2014
Volume: 14First Page: 111 Last Page: 111
PubMed Id: 24965754
ID: 4099082
Publisher Id: 1471-230X-14-111
DOI: 10.1186/1471-230X-14-111

A randomised, controlled study of small intestinal motility in patients treated with sacral nerve stimulation for irritable bowel syndrome
Janne Fassov12 Email: janfas@rm.dk
Lilli Lundby1 Email: lilli@dadlnet.dk
Jonas Worsøe1 Email: jonas.worsoe@gmail.com
Steen Buntzen1 Email: steen.buntzen@dadlnet.dk
Søren Laurberg1 Email: liss.lawaetz@aarhus.rm.dk
Klaus Krogh2 Email: klaukrog@rm.dk
1Department of Surgery, P, Aarhus University Hospital, Aarhus, Denmark
2Department of Hepatology and Gastroenterology, Neurogastroenterology Unit, Aarhus University Hospital, Aarhus, Denmark

Background

Irritable bowel syndrome (IBS) is among the most common gastrointestinal disorders worldwide. Depending on the criteria used, the reported prevalence ranges from 3-22% of the general population [1-3]. Characteristics of IBS include chronic recurrent abdominal pain associated with a change in stool form and frequency as well as relief of the abdominal pain by defecation. The aetiology of the disorder is unknown, and there are no objective markers available. Thus, diagnosis of IBS is based upon the Rome III criteria [4]. Treatment of IBS is often unsatisfactory and treatment modalities with acceptable long-term results are needed.

Sacral nerves stimulation (SNS) is a minimally invasive procedure introduced in 1995 by Matzel et al. [5]. An electrode is placed through the sacral foramen and subsequently connected with a neurostimulator to deliver continuous stimulation to the nerve fibres. Initially, SNS was used to treat idiopathic faecal incontinence. However, indications have now spread to include faecal incontinence secondary to anal sphincter lesions and severe cases of intractable constipation. A pilot study has indicated that temporary sacral nerve stimulation can reduce symptoms of IBS [6]. Recently, a randomised, controlled study from our group has shown that permanent SNS for severe diarrhoea-predominant or mixed IBS subtypes significantly alleviates IBS-specific symptoms and improves quality of life. Furthermore, SNS significantly reduces the frequency of defecation, episodes of urgency, and time spent on toilet [7].

The mechanism of action of SNS is unclear. Besides, a direct effect on the efferent sacral nerves, SNS seems to involve modulation of afferent signalling to the sacral spinal cord resulting in neuromodulation at spinal and/or supraspinal levels [8-10]. It is increasingly evident that the effects of SNS extend beyond the segments of the colorectum innervated by the sacral roots. Thus, changes in contractility and transport have been demonstrated in the right side of the colon during SNS for either faecal incontinence or severe constipation [11,12].

Studies on small intestinal motility in IBS are not in full agreement. Some have found specific abnormal motility patterns correlating to the different IBS subtypes [13,14], while others have found virtually no signs of dysmotility [15,16].

The aim of this study was to evaluate the effect of SNS on small intestinal motility in IBS patients of diarrhoea-predominant and mixed subgroups. Our a priori hypothesis was that SNS would prolong small intestinal transit.


Methods
Patients

Twenty patients (5 male, median age 31 years (range 19–48)) were included in a randomised, controlled, crossover design at our tertiary centre to assess small intestinal motility after four weeks of each SNS (ON) and placebo (OFF) (Figure 1). The patients included were identical to the patients enrolled in the simultaneous study on the treatment effect of SNS for IBS that has been described in detail [7]. All patients had been diagnosed with IBS according to the Rome III criteria and were characterised as having either diarrhoea-predominant (loose (mushy) or watery stools > 25% and hard or lumpy stools < 25% of bowel movements) (n = 11) or mixed IBS (hard or lumpy stools > 25% and loose (mushy) or watery stools >25% of bowel movements) (n = 9) [17]. Patients were bloc randomised into two groups equal in size and allocation was performed by a research nurse independent of the study. Investigators were blinded to the setting of the stimulator and patients were at no time informed about the setting. Median time since implantation of the permanent neurostimulator was 4 months (range 1–20 months).

None of the patients were taking any medication affecting gastrointestinal motility. Before enrolment all patients had to present with a normal sigmoidoscopy or colonoscopy including biopsies. Furthermore, tests for celiac disease, thyroid disease, and lactose intolerance all had to be normal. Age below 18 or above 70 years, pregnancy, and severe psychological comorbidity were exclusion criteria.

Standard anal physiology tests including resting anal pressure, squeeze pressure, rectal volume tolerability, anal sensitivity, pudendal nerve motor latency, and endoanal ultrasound were performed at baseline and results were within the normal range previously published from our unit [18].

Ethical approval (The National Committee on Health Research Ethics, ID 20070218) was obtained at forehand and all patients had signed written informed consent before enrolment. The study was registered at clinical.trails.gov (NCT00919672).

Motility Tracking System, MTS-1

This novel system tracks an orally ingested, cylindrical, silicon-covered magnetic pill (dimensions 6x15 mm, weight 0.9 g, and density 1.8 g cm-3) by a 4x4 matrix of sensors positioned over the abdomen [19]. The system has previously been validated and described in detail [20].

Prior to recordings, the sensor matrix was calibrated by offsetting the earth’s and environmental magnetic fields. With the magnet ingested, the position of the sensor plate was registered with respect to anatomical reference points. During recording, the magnetic induction measured by each sensor was continuously transmitted to a computer with a sampling rate of 10 Hz. With this information, the magnets position and orientation was described according to three directions (x, y, and z) and two inclination angles (θ, φ). Changes in the magnets position coordinates reflect propagation of the magnet, while a change in the magnets orientation reflect rotation. The latter detects the specific contraction frequency characteristic of the stomach, small intestine and colon. Data processing and analysis were continuously performed running custom-made software (MTS_Record, Motilis, Lausanne, Switzerland) on a computer showing the magnets real-time position and orientation. Artefacts due to respiration and movements were detected using accelerometers placed on the neck and upper abdomen.

After an overnight fast, the magnet was ingested at 10 AM and recordings proceeded until 16 PM. A standardised meal (a sandwich and a smoothie beverage, ~ 1,500 kJ, 16% protein, 32% fat and 52% carbohydrate) was served at 14 PM.

During investigations, patients were placed in a non-magnetic bed with a head elevation (>45 degrees). They were encouraged to keep talk and movement to a minimum. Recordings were interrupted for small breaks upon request.

Data analysis

Gastric emptying was defined as the time from ingestion of the magnet until pyloric passage. Cessation of the characteristic 3 gastric contractions per minute pattern, appearance of the duodenal arch on the 2D picture, and a consecutively beginning of the characteristic 8–10 small intestinal contractions per minute pattern, were marks of pyloric passage (Figure 2). Small intestinal transit was defined as the time from pyloric passage until ileocecal passage. Cessation of the 8–10 contractions per minute pattern characteristic for the small intestine, a short burst of a fast movement, and visualisation of the magnet in the lower right quadrant of the abdomen on the 2D picture, were marks of ileocecal passage.

Dedicated software (MTS_Tool, Motilis, Lausanne, Switzerland) was used to compute the velocity (m/h) of the magnetic pill for one hour following pyloric passage and for one hour following ingestion of the standardised meal. Based on previously performed analysis of velocity histograms identifying a trimodal distribution, movements were divided into fast (>15 cm per minute), slow (between 1.5 and 15 cm per minute), and very slow (<1.5 cm per minute) [21].

Statistics

Primary outcome parameter was the velocity of the magnetic pill within the small intestine.

The treatment effect (ON – OFF) was assessed by computing the difference between period 1 and period 2 and comparing the distribution of these differences in the two arms of the study. Likewise, the treatment period interaction was assessed by computing the sum in period 1 and period 2 and comparing the distribution of these differences in the two arms of the study.

Data are provided as median (range) and counts (percentage). Statistical analysis was performed using Wilcoxon’s rank sum test and Fisher’s exact test, with significance levels set at 0.05.

Patients included in the present study were the same as those included in a previous study on the effect of SNS on IBS specific symptoms [7]. Sample size calculation was based on expected change in symptoms and has been presented previously. Therefore, no formal sample size calculation was performed for changes in small intestinal transit time.


Results

Patient demographics are shown in Table 1. MTS-1 investigations were well tolerated by all patients and no procedure related adverse effects were observed.

Gastric emptying

All twenty patients were eligible for comparison of gastric emptying. The characteristic 3 per minute contractions of the stomach were present in all patients both in the ON and OFF periods. We observed no statistical significant difference in gastric emptying between periods with and without neurostimulation (Group ON-OFF: median change 3.5 min (range -304, 79), Group OFF-ON: median change -33 min (range -128, 70)) (p > 0.09). No treatment period interaction was observed (p > 0.05). Gastric emptying times in the ON and OFF period are provided in Table 2.

Small intestinal motility

In the fasting state, comparison of the velocity of the magnet pill during the first hour following duodenal passage was based on 19 patients. One patient had prolonged gastric emptying in the ON period (>360 minutes). The characteristic 8–10 per minute small intestinal contraction pattern was present in all patients both during ON and OFF periods. We found no statistically significant difference between the velocity of the magnet pill during periods with and without stimulation (Group ON-OFF: median change 0 m/h (range -1.07, 0.63), Group OFF-ON: median change 0.27 m/h (range -0.59, 1.12)) (p = 0.25). The same was true for both subgroups (diarrhoea-predominant and mixed IBS) (Table 3). No treatment period interaction was observed in any of the parameters (p > 0.05). Median one hour velocities in the ON and OFF period following duodenal passage are provided in Table 2.

In the postprandial state, comparison of the velocity of the magnetic pill one hour following the standardised meal was based on 17 patients. One patient had prolonged gastric emptying time and in two patients the magnet passed into the coecum, before the meal or before the end of the first postprandial hour. We found no statistically significant difference between the velocity of the magnet pill during periods with and without stimulation (Group ON-OFF: median change -0.13 m/h (range -0.46, 0.23), Group OFF-ON: median change 0.015 m/h (range -0.48, 0.59)) (p = 0.14). This was also true for both subgroups (diarrhoea-predominant and mixed IBS) (Table 3). No treatment period interaction was observed in any of the parameters (p > 0.05). Median one hour velocities in the ON and OFF period following the standardised meal are provided in Table 2.

Small intestinal passage occurred mainly during very fast movements (>15 cm pr. min) accounting only for a small proportion of time recorded. Comparing the distribution of the differences in the two arms of the study in the fasting state, there was no difference in neither the proportion of time nor the distance covered with fast, slow or very slow movements (Table 4).

Within the six hours protocol the magnet pill passed into coecum in four (20%) patients during the ON period and in five (25%) during the OFF period (p = 1.00).


Discussion

In this randomised, controlled, crossover study among patients with severe IBS we found no effect of SNS on gastric emptying or small intestinal motility. This was in spite of significantly reduced defecation frequencies, urgency episodes, and time spent on the toilet [7]. Studies on the effects of SNS on symptoms of IBS are very sparse [6,7] and the physiological effects have not previously been investigated. The lack of effect on small intestinal transit in patients with IBS is, however, consistent with previously published data on SNS in patients with faecal incontinence [22,23]. In support, this study observed no treatment period interaction in any of the parameters analysed.

In the present study, the small intestinal transit patterns were almost identical with those previously reported for healthy subjects [20]. Small intestinal dysmotility in IBS has been a matter of discussion. In a recent study using manometry there were few signs of small intestinal dysmotility [15] and others have only found abnormal small intestinal motility in IBS patients, who also had delayed gastric emptying [16]. In contrast, studies using scintigraphy or the hydrogen breath test have shown that diarrhoea-predominant IBS patients have accelerated small intestinal transit, while constipation-predominant IBS patients have delayed small intestinal transit [13,14].

The mode of action of SNS is unclear. It is, however, most likely that SNS, in addition to the direct effect on efferent sacral nerve fibres, stimulates afferent fibres from the distal colorectum to the spinal cord. Such afferent stimulation may cause neuromodulation at spinal and/or supraspinal levels. This is supported by evidence of altered motility in the right side of the colon during SNS [11,12]. Furthermore, SNS alters cerebral evoked potentials and reduces the overall corticoanal excitability during rectal distension [9,24]. Thus, modulation through afferent nerve fibres may be an important part of the mode of action of SNS for IBS.

In the present study, SNS had a significant effect on the frequency of defecation, episodes of urgency, and time spent on toilet. Based on results from the same patient group, we have previously reported that SNS alleviates IBS specific symptoms including pain, bloating, diarrhoea, constipation and satiety and that the effect lasts at least one year [7]. In patients with faecal incontinence, the percutaneuos nerve evaluation test alters rectal sensation to distension [9,24,25]. Most IBS patients have visceral hypersensitivity [26,27] and abnormal engagement of CNS regions associated with emotional arousal and endogenous pain modulation has been documented during rectal distension [28]. It is therefore possible, but remains to be investigated, that SNS alters rectal sensitivity and central processing of stimuli in IBS patients.

The strength of the present study is the randomised design. There are, however, important limitations and the relatively small patient number may have caused a type II error.

Even though patients were never informed of the actual setting of their stimulator, fifteen out twenty patients were able to tell correctly, whether the stimulator was turned ON or OFF, wherefore, the study is not truly double-blinded [7]. This may have caused a placebo effect. On the other hand, all symptomatic effects of SNS were maintained at least one year after implantation, which speaks against the effect being solely placebo [7]. Moreover, setting the stimulation subsensory in patients with constipation has been proved to eradicate the effect on the colonic motility [29].

Time from implantation of the permanent stimulator to inclusion varied considerably among patients in the study. In a study from our unit on patients treated with SNS for faecal incontinence, symptoms reappeared within a few hours after withdrawal of stimulation [30] and in previous motility studies, the neurostimulators were turned off only for one week before investigations [22,23]. Most important, we observed no treatment period interaction in the present study or in the study evaluating the effects of SNS on IBS-specific symptoms and quality of life [7]. This speaks against that time from implantation to inclusion into the study is affecting small intestinal motility during SNS.

During fast a non-digestible object as the magnetic pill will usually leave the stomach with an antral phase III of the MMC [31,32]. This restricts the usefulness of MTS-1 for estimating gastric emptying time. However, in accordance with our results the scintigraphic study by Damgaard et al. failed to detect any effect of SNS on gastric emptying [23].

Practical and ethical reasons mandated that the recordings were limited to six hours as patients had to be almost immobile. Therefore, we were only able to define the total small intestinal transit time in a few patients. Such data could have been obtained by scintigraphy. In contrast to scintigraphy, the MTS-1 system allows continuous description of transit patterns and the MTS-1 has previously allowed identification of abnormal small intestinal motility in patients with systemic sclerosis, spinal cord injury and carcinoid syndrome [33-35]. The study protocol for the present study was based on experiences from those previous studies.

Gastric emptying is very variable and with the protocol limited to six hours, the assessment of the fasting small intestinal motility was based on measurements during the first hour after pyloric passage. This is too short to allow us to draw any conclusions about the effects of SNS on the migrating motor complex (MMC). Furthermore, the six hours protocol proved too short to allow detailed description of colorectal motility even if patients were studied on consecutive days.


Conclusion

SNS holds promise as an effective treatment modality against severe diarrhoea-predominant or mixed IBS. Even though, SNS reduces the frequency of defecation, episodes of urgency, and time spent on toilet, this occurs without major changes in small intestinal transit patterns. We speculate that the effects of SNS in IBS may be caused by modulation of afferent nerve fibres causing altered colorectal sensory perception.


Competing interests

L Lundby and S Buntzen have received honoraria from Medtronic Inc as speakers. S Laurberg has received an honorarium as a member of Medtronic Inc’s medical advisory board. Med Inc had no had no influence on study design, data analysis or interpretation, writing, or submission of the report. J Fassov, J Worsøe, and K Krogh all declare to have no competing interests.


Authors’ contributions

JF, LL and KK were the writing committee. JF and JW analysed data. JF, LL, SB, SL, and KK were all involved in the design of the study, patient enrolment and follow-up, and manuscript review. All authors read and approved the final manuscript.


Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-230X/14/111/prepub


Acknowledgements

The study was supported by a grant from The Danish Council for Strategic Research and The Institute of Clinical Medicine, Aarhus University Hospital.


References
Drossman DA,Li Z,Andruzzi E,Temple RD,Talley NJ,Thompson WG,Whitehead WE,Janssens J,Funch-Jensen P,Corazziari E,U.S. householder survey of functional gastrointestinal disorders. Prevalence, sociodemography, and health impactDig Dis SciYear: 19931491569158010.1007/BF013031628359066
Mearin F,Badia X,Balboa A,Baro E,Caldwell E,Cucala M,Diaz-Rubio M,Fueyo A,Ponce J,Roset M,Talley NJ,Irritable bowel syndrome prevalence varies enormously depending on the employed diagnostic criteria: comparison of Rome II versus previous criteria in a general populationScand J GastroenterolYear: 200114111155116110.1080/0036552015258477011686214
Boyce PM,Koloski NA,Talley NJ,Irritable bowel syndrome according to varying diagnostic criteria: are the new Rome II criteria unnecessarily restrictive for research and practice?Am J GastroenterolYear: 200014113176318310.1111/j.1572-0241.2000.03197.x11095338
Longstreth GF,Thompson WG,Chey WD,Houghton LA,Mearin F,Spiller RC,Functional bowel disordersGastroenterologyYear: 20061451480149110.1053/j.gastro.2005.11.06116678561
Matzel KE,Stadelmaier U,Hohenfellner M,Gal FP,Electrical stimulation of sacral spinal nerves for treatment of faecal incontinenceLancetYear: 19951489831124112710.1016/S0140-6736(95)91799-37475602
Lundby L,Krogh K,Buntzen S,Laurberg S,Temporary sacral nerve stimulation for treatment of irritable bowel syndrome: a pilot studyDis Colon RectumYear: 20081471074107810.1007/s10350-008-9255-y18418655
Fassov J,Lundby L,Buntzen S,Laurberg S,Krogh K,A Randomised, Controlled, Crossover Study of Sacral Nerve Stimulation for Irritable Bowel SyndromeAnn SurgYear: 2014 Epub ahead of print.
Gourcerol G,Vitton V,Leroi AM,Michot F,Abysique A,Bouvier M,How sacral nerve stimulation works in patients with faecal incontinenceColorectal DisYear: 2011148e203e21110.1111/j.1463-1318.2011.02623.x21689312
Sheldon R,Kiff ES,Clarke A,Harris ML,Hamdy S,Sacral nerve stimulation reduces corticoanal excitability in patients with faecal incontinenceBr J SurgYear: 200514111423143110.1002/bjs.511116044426
Lundby L,Moller A,Buntzen S,Krogh K,Vang K,Gjedde A,Laurberg S,Relief of fecal incontinence by sacral nerve stimulation linked to focal brain activationDis Colon RectumYear: 201114331832310.1007/DCR.0b013e31820348ac21304303
Michelsen HB,Christensen P,Krogh K,Rosenkilde M,Buntzen S,Theil J,Laurberg S,Sacral nerve stimulation for faecal incontinence alters colorectal transportBr J SurgYear: 200814677978410.1002/bjs.608318412293
Dinning PG,Fuentealba SE,Kennedy ML,Lubowski DZ,Cook IJ,Sacral nerve stimulation induces pan-colonic propagating pressure waves and increases defecation frequency in patients with slow-transit constipationColorectal DisYear: 200714212313210.1111/j.1463-1318.2006.01096.x17223936
Cann PA,Read NW,Brown C,Hobson N,Holdsworth CD,Irritable bowel syndrome: relationship of disorders in the transit of a single solid meal to symptom patternsGutYear: 198314540541110.1136/gut.24.5.4056840614
Lu CL,Chen CY,Chang FY,Lee SD,Characteristics of small bowel motility in patients with irritable bowel syndrome and normal humans: an Oriental studyClin Sci (Lond)Year: 199814216516910.1042/CS199800409680498
Cogliandro RF,Antonucci A,De GR,Barbara G,Cremon C,Cogliandro L,Frisoni C,Pezzelli R,Morselli-Labate AM,Corinaldesi R,Stanghellini V,Patient-reported outcomes and gut dysmotility in functional gastrointestinal disordersNeurogastroenterol MotilYear: 201114121084109110.1111/j.1365-2982.2011.01783.x21917083
Evans PR,Bak YT,Shuter B,Hoschl R,Kellow JE,Gastroparesis and small bowel dysmotility in irritable bowel syndromeDig Dis SciYear: 199714102087209310.1023/A:10188746027909365140
Drossman DA,Corazziari E,Delvaux M,Spiller R,Talley NJ,Thompson WG,Appendix B: Rome III diagnostic criteria for functional gastrointestinal disordersRev Gastroenterol MexYear: 2010144511516
Ryhammer AM,Laurberg S,Bek KM,Age and anorectal sensibility in normal womenScand J GastroenterolYear: 199714327828410.3109/003655297090002079085467
Stathopoulos E,Schlageter V,Meyrat B,Ribaupierre Y,Kucera P,Magnetic pill tracking: a novel non-invasive tool for investigation of human digestive motilityNeurogastroenterol MotilYear: 200514114815410.1111/j.1365-2982.2004.00587.x15670274
Worsoe J,Fynne L,Gregersen T,Schlageter V,Christensen LA,Dahlerup JF,Rijkhoff NJ,Laurberg S,Krogh K,Gastric transit and small intestinal transit time and motility assessed by a magnet tracking systemBMC GastroenterolYear: 20111414510.1186/1471-230X-11-14522206545
Hiroz P,Schlageter V,Givel JC,Kucera P,Colonic movements in healthy subjects as monitored by a Magnet Tracking SystemNeurogastroenterol MotilYear: 200914883885710.1111/j.1365-2982.2009.01298.x19400925
Worsoe J,Fassov J,Schlageter V,Rijkhoff NJ,Laurberg S,Krogh K,Turning off sacral nerve stimulation does not affect gastric and small intestinal motility in patients treated for faecal incontinenceColorectal DisYear: 20121410e713e72010.1111/j.1463-1318.2012.03148.x22738022
Damgaard M,Thomsen FG,Sorensen M,Fuglsang S,Madsen JL,The influence of sacral nerve stimulation on gastrointestinal motor function in patients with fecal incontinenceNeurogastroenterol MotilYear: 2011146556e20710.1111/j.1365-2982.2011.01683.x21385289
Giani I,Novelli E,Martina S,Clerico G,Luc AR,Trompetto M,Malaquti S,Nicholls J,Ganio E,The effect of sacral nerve modulation on cerebral evoked potential latency in fecal incontinence and constipationAnn SurgYear: 2011141909610.1097/SLA.0b013e3182196ff421494120
Abdel-Halim MR,Crosbie J,Engledow A,Windsor A,Cohen CR,Emmanuel AV,Temporary sacral nerve stimulation alters rectal sensory function: a physiological studyDis Colon RectumYear: 20111491134114010.1097/DCR.0b013e318220c0ba21825894
Spiller R,Aziz Q,Creed F,Emmanuel A,Houghton L,Hungin P,Jones R,Kumar D,Rubin G,Trudgill N,Whorwell P,Guidelines on the irritable bowel syndrome: mechanisms and practical managementGutYear: 200714121770179810.1136/gut.2007.11944617488783
Kwan CL,Diamant NE,Mikula K,Davis KD,Characteristics of rectal perception are altered in irritable bowel syndromePainYear: 2005141–216017115621377
Tillisch K,Mayer EA,Labus JS,Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndromeGastroenterologyYear: 20111419110010.1053/j.gastro.2010.07.05320696168
Dinning PG,Hunt LM,Arkwright JW,Patton V,Szczesniak MM,Wiklendt L,Davidson JB,Lubowski DC,Cook IJ,Pancolonic motor response to subsensory and suprasensory sacral nerve stimulation in patients with slow-transit constipationBr J SurgYear: 20121471002101010.1002/bjs.876022556131
Michelsen HB,Krogh K,Buntzen S,Laurberg S,A prospective, randomized study: switch off the sacral nerve stimulator during the night?Dis Colon RectumYear: 200814553854010.1007/s10350-008-9219-218299927
Mojaverian P,Chan K,Desai A,John V,Gastrointestinal transit of a solid indigestible capsule as measured by radiotelemetry and dual gamma scintigraphyPharm ResYear: 198914871972410.1023/A:10159987085602813265
Cassilly D,Kantor S,Knight LC,Maurer AH,Fisher RS,Semler J,Parkman HP,Gastric emptying of a non-digestible solid: assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphyNeurogastroenterol MotilYear: 200814431131910.1111/j.1365-2982.2007.01061.x18194154
Fynne L,Worsoe J,Gregersen T,Schlageter V,Laurberg S,Krogh K,Gastrointestinal transit in patients with systemic sclerosisScand J GastroenterolYear: 201114101187119310.3109/00365521.2011.60315821815862
Fynne L,Worsoe J,Gregersen T,Schlageter V,Laurberg S,Krogh K,Gastric and small intestinal dysfunction in spinal cord injury patientsActa Neurol ScandYear: 201214212312810.1111/j.1600-0404.2011.01508.x21428967
Gregersen T,Gronbaek H,Worsoe J,Schlageter V,Laurberg S,Krogh K,Effects of Sandostatin LAR on gastrointestinal motility in patients with neuroendocrine tumorsScand J GastroenterolYear: 2011147–889590221623673

Figures

[Figure ID: F1]
Figure 1 

Design of the randomised,controlled,crossover study.



[Figure ID: F2]
Figure 2 

Real time recording with MTS-1.A In the display to the left the postion x, y, and z and the orientation θ, and φ are visualised along with the position of the sensor array over the body. To the right the concurrent recording of the magnetic pills movement through the duodenal arch is displayed. B The duodenal passage is visualised as the magnetic pills change in position (x, y, and z) (arrow 1) in combination with disappearance of the characteristic 3 contractions per minute patterns of the stomach (θ and φ) (arrow 2). The curve at the bottom detects artefacts from respiration and movement.



Tables
[TableWrap ID: T1] Table 1 

Patients demographics


Study group N = 20
Age (years, median range)
31(19–48)
Men/women
5/15
Body Mass Index (kg/m2, median range)
25.5(18–37)
Diarrhoea-predominant/mixed IBS
11/9
Duration of IBS (patients)
 
1-5 years
5
6-10 years
9
> 11 years
6
Baseline symptom score in the GSRS-IBS questionnaire (median range)
62(45–80)
Baseline quality of life score in the IBS-IS questionnaire (median range) 136(82–180)

GSRS-IBS stands for Gastrointestinal Symptom Rating Scale – Irritable Bowel Version (13 = no symptoms of IBS to 91 = severe IBS). IBS-IS stands for Irritable Bowel Syndrome – Impact Scale (26 = no impact on daily life to 182 = severe impact on daily life).


[TableWrap ID: T2] Table 2 

Gastric emptying and one-hour velocities in the small intestine in the ON and OFF period


  ON period OFF period
Gastric emptying (minutes) (n = 20)
43 (5–360)
77 (4–142)
IBS-D (n = 11)
51 (9–159)
89 (34–142)
IBS-M (n = 9)
42 (5–360)
66 (4–121)
One-hour velocity following duodenal passage (meters/hour) (n = 20)
1.29 (0.56-2.3)
1.19 (0.58-1.72)
IBS-D (n = 11)
1.29 (0.67-2.9)
1.19 (0.58-1.72)
IBS-M (n = 9)
1.1 (0.56-2.3)
1.12 (0.62-1.29)
One-hour velocity postprandial (meters/hour) (n = 20)
0.48 (0.1-1.02)
0.42 (0.11-0.87)
IBS-D (n = 11)
0.49 (0.17-1.02)
0.36 (0.11-0.7)
IBS-M (n = 9) 0.48 (0.1-0.78) 0.46 (0.14-0.87)

IBS-D stand for diarrhoea-predominant IBS and IBS-M stand for mixed IBS.

Values are expressed as median and range.


[TableWrap ID: T3] Table 3 

Inter-period change in the velocity of the magnet-capsule through the small intestine


One-hour following duodenal passage Change ON-OFF Change OFF-ON p
IBS-D and IBS-M (n = 19)
0 (-1.07, 0.63)
0.27 (-0.59, 1.12)
0.25
IBS-D (n = 11)
0.09 (-0.55, 0.45)
0.14 (-0.59, 1.12)
0.68
IBS-M (n = 8)
-0.08 (-1.07, 0.63)
0.27 (0.22, 0.32)
0.32
One-hour following ingestion of meal
Change ON-OFF
Change OFF-ON
p
IBS-D and IBS-M (n = 17)
-0.13 (-0.46, 0.23)
0.01 (-0.48, 0.59)
0.14
IBS-D (n = 10)
-0.04 (-0.17, 0.09)
0.16 (-0.09, 0.59)
0.30
IBS-M (n = 7) -0.13 (-0.46, 0.23) -0.31 (-0.48, -0.15) 0.26

IBS-D and IBS-M stand for diarrhoea-predominant and mixed irritable bowel syndrome. Values are expressed in meters pr. hour as median change (the difference in the velocity of the magnet-capsule from ON to OFF or OFF to ON) and range.


[TableWrap ID: T4] Table 4 

Small intestinal transit patterns during fast


  ON-OFF group OFF-ON group p
Proportion of time with fast movements (percentage)
-8 (-27, 53)
20.5 (-25, 55)
0.18
Distance covered during fast movements (cm)
0 (-7, 5)
2 (-5, 6)
0.09
Proportion of time with slow movements (percentage)
-2 (-53, 40)
-16 (-60, 35)
0.44
Distance covered during slow movements (cm)
-3 (-31, 10)
2.5 (-13, 22)
0.18
Proportion of time with very slow movements (percentage)
5 (-93, 12)
1 (-13, 7)
0.08
Distance covered during very slow movements (cm) 5 (-12, 32) -5 (-23, 16) 0.06

Most of the distance covered by the magnetic pill during the first hour after pyloric passage occurred during short bursts of fast movement only accounting for a small proportion of the time. This was unaffected by SNS.

Fast movements (>15 cm/min), slow movements (between 1.5-15 cm/min), and very slow movements (<1.5 cm/min). Values are expressed as median change and range.



Article Categories:
  • Research Article

Keywords: Irritable bowel syndrome, Motility tracking system-1, Small intestinal motility, Bowel habits.

Previous Document:  Barcode-Enabled Sequencing of Plasmablast Antibody Repertoires in Rheumatoid Arthritis.
Next Document:  Physician-patient end-of-life care discussions: Correlates and associations with end-of-life care pr...