Document Detail

A phenomenological approach to modelling collective cell movement in 2D.
MedLine Citation:
PMID:  23277411     Owner:  NLM     Status:  Publisher    
There are two main approaches to unraveling the mechanisms involved in the regulation of collective cell movement. On the one hand, "in vitro" tests try to represent "in vivo" conditions. On the other hand, "in silico" tests aim to model this movement through the use of complex numerically implemented mathematical methods. This paper presents a simple cell-based mathematical model to represent the collective movement phenomena. This approach is used to better understand the different interactive forces which guide cell movement, focusing mainly on the role of the cell propulsion force with the substrate. Different applications are simulated for 2D cell cultures, wound healing, and collective cell movement in substrates with different degrees of stiffness. The model provides a plausible explanation of how cells work together in order to regulate their movement, showing the significant influence of the propulsive force exerted by the cell to the substrate on guiding the collective cell movement and its interplay with other cell forces.
R Rey; J M García-Aznar
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-1
Journal Detail:
Title:  Biomechanics and modeling in mechanobiology     Volume:  -     ISSN:  1617-7940     ISO Abbreviation:  Biomech Model Mechanobiol     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101135325     Medline TA:  Biomech Model Mechanobiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Mechanical Engineering Department, Aragon Institute of Engineering Research (I3A) (M2BE), University of Zaragoza, Zaragoza, Spain,
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Velocity profiles in the human ductus venosus: a numerical fluid structure interaction study.
Next Document:  The Role of Fetuin-A in Physiological and Pathological Mineralization.