Document Detail

The oxytalan fibre network in the periodontium and its possible mechanical function.
MedLine Citation:
PMID:  22784380     Owner:  NLM     Status:  Publisher    
The biomechanical character of the periodontal ligament (PDL) is crucial in its response to functional and orthodontic forces. Collagen has been the primary subject of investigations in this field. Several studies, however, indicate that oxytalan fibres, which belong to the elastic fibre family, also contribute to the biomechanical character and behaviour of the PDL. In order to elucidate this, we have evaluated the available literature on the oxytalan fibre network within the PDL and supra-alveolar tissues with respect to development, morphology and distribution, and response to mechanical stimulation. To this end, we have combined the classical histological studies with more recent in vitro studies. Oxytalan fibres develop simultaneously with the root and the vascular system within the PDL. A close association between oxytalan fibres and the vascular system also remains later in life, suggesting a role in vascular support. Mechanical loading of the PDL, through orthodontic force application, appears to induce an increase in the number, size, and length of oxytalan fibres. In line with this, in vitro stretching of PDL fibroblasts (PDLFs) results in an increased production of fibrillin, a major structural component of the microfibrils that make up oxytalan fibres. The available data suggest a mechanical function for oxytalan, but to date experimental data are limited. Further research is required to clarify their exact mechanical function and possible role in orthodontic tooth movement.
Hardus Strydom; Jaap C Maltha; Anne M Kuijpers-Jagtman; Johannes W Von den Hoff
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-7-9
Journal Detail:
Title:  Archives of oral biology     Volume:  -     ISSN:  1879-1506     ISO Abbreviation:  -     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-7-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0116711     Medline TA:  Arch Oral Biol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier Ltd. All rights reserved.
Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Centre, The Netherlands.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Mental healthcare staff's knowledge and experiences of diabetes care for persons with psychosis - a ...
Next Document:  Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data.