Document Detail


A new software program for pathological data analysis.
MedLine Citation:
PMID:  20605020     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
This study concerns the development of "NEO Image Analysis Software", a software package that can perform analyses on pathological images. The objective of the program is to minimize subjectivity of the pathologist in the diagnosis and treatment of diseases by standardizing the measurements. The following analyses have been performed on the images: area detection, angle detection, edge detection, blurring, sharpening, area counting, finding the ratio of areas with different colours, inversion, colour-to-gray scale conversion, colour mapping and drawing-based analysis (rectangular, circular, polygon and random).
Authors:
Hakan Işik; Evren Sezgin; Mustafa Cihat Avunduk
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Computers in biology and medicine     Volume:  40     ISSN:  1879-0534     ISO Abbreviation:  Comput. Biol. Med.     Publication Date:  2010 Aug 
Date Detail:
Created Date:  2010-08-16     Completed Date:  2010-11-29     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  1250250     Medline TA:  Comput Biol Med     Country:  United States    
Other Details:
Languages:  eng     Pagination:  715-22     Citation Subset:  IM    
Copyright Information:
Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Affiliation:
Department of Electronics and Computer Education, Selcuk University, Konya, Turkey. hisik@selcuk.edu.tr
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Algorithms*
Diagnostic Imaging / methods*
Histocytochemistry
Humans
Image Processing, Computer-Assisted / methods*
Software*

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Communicative function demonstration induces kind-based artifact representation in preverbal infants...
Next Document:  Tuning fuzzy PD and PI controllers using reinforcement learning.