Document Detail


A new quantitative analysis technique for cardiac arrhythmia using bispectrum and bicoherency.
MedLine Citation:
PMID:  17271591     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
Ventricular tachyarrhythmias, in particular ventricular fibrillation (VF), are the primary arrhythmic events in the majority of patients suffering from sudden cardiac death. Attention has focused upon these articular rhythms as it is recognized that prompt therapy can lead to a successful outcome. There has been considerable interest in analysis of the surface electrocardiogram (ECG) in VF centred on attempts to understand the pathophysiological processes occurring in sudden cardiac death, predicting the efficacy of therapy, and guiding the use of alternative or adjunct therapies to improve resuscitation success rates. Atrial fibrillation (AF) and ventricular tachycardia (VT) are other types of tachyarrhythmias that constitute a medical challenge. In this paper, a high order spectral analysis technique is suggested for quantitative analysis and classification of cardiac arrhythmias. The algorithm is based upon bispectral analysis techniques. The bispectrum is estimated using an AR model, and the frequency support of the bispectrum is extracted as a quantitative measure to classify atrial and ventricular tachyarrhythmias. Results show a significant difference in the parameter values for different arrhythmias. Moreover, the bicoherency spectrum shows different bicoherency values for normal and tachycardia patients. In particular, the bicoherency indicates that phase coupling decreases as arrhythmia kicks in.
Authors:
L Khadra; A Al-Fahoum; S Binajjaj
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference     Volume:  1     ISSN:  1557-170X     ISO Abbreviation:  Conf Proc IEEE Eng Med Biol Soc     Publication Date:  2004  
Date Detail:
Created Date:  2007-02-02     Completed Date:  2007-05-17     Revised Date:  2014-08-21    
Medline Journal Info:
Nlm Unique ID:  101243413     Medline TA:  Conf Proc IEEE Eng Med Biol Soc     Country:  United States    
Other Details:
Languages:  eng     Pagination:  13-6     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Respiratory sounds classification using cepstral analysis and Gaussian mixture models.
Next Document:  Comparing objective feature statistics of speech for classifying clinical depression.