Document Detail

The nearest neighbor and the bayes error rates.
MedLine Citation:
PMID:  21869395     Owner:  NLM     Status:  In-Data-Review    
The (k, l) nearest neighbor method of pattern classification is compared to the Bayes method. If the two acceptance rates are equal then the asymptotic error rates satisfy the inequalities Ek,l + 1 ¿ E*(¿) ¿ Ek,l dE*(¿), where d is a function of k, l, and the number of pattern classes, and ¿ is the reject threshold for the Bayes method. An explicit expression for d is given which is optimal in the sense that for some probability distributions Ek,l and dE* (¿) are equal.
G Loizou; S J Maybank
Related Documents :
20500755 - Integrating geo-referenced multiscale and multidisciplinary data for the management of ...
17146125 - Are current processes for nuclear emergency management in europe adequate?
15062495 - The business of emergency medicine: a model for success.
19364625 - It's not just what you say, it's also how you say it: opening the 'black box' of inform...
21869275 - A loose-pattern process approach to clustering fuzzy data sets.
11749675 - Limitations of conventional models and a conceptual framework for a nutrient flow repre...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  IEEE transactions on pattern analysis and machine intelligence     Volume:  9     ISSN:  0162-8828     ISO Abbreviation:  IEEE Trans Pattern Anal Mach Intell     Publication Date:  1987 Feb 
Date Detail:
Created Date:  2011-08-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9885960     Medline TA:  IEEE Trans Pattern Anal Mach Intell     Country:  United States    
Other Details:
Languages:  eng     Pagination:  254-62     Citation Subset:  -    
Department of Computer Science, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Image estimation using doubly stochastic gaussian random field models.
Next Document:  Structuring free space as a hypergraph for roving robot path planning and navigation.