Document Detail

A microfluidic device with removable packaging for the real time visualisation of intracellular effects of nanosecond electrical pulses on adherent cells.
MedLine Citation:
PMID:  23037002     Owner:  NLM     Status:  Publisher    
The biological mechanisms induced by the application of nanosecond pulsed electric fields (nsPEFs: high electrical field amplitude during very short duration) on cells remain partly misunderstood. In this context, there is an increasing need for tools that allow the delivering of such pulses with the possibility to monitor their effects in real-time. Thanks to miniaturization and technology capabilities, microtechnologies offer great potential to address this issue. We report here the design and fabrication of a microfluidic device optimized for the delivery of ultra short (10 ns) and intense (up to 280 kV cm(-1)) electrical pulses on adherent cells, and the real time monitoring of their intracellular effects. Ultra short electric field pulses (nsPEFs or nanopulses) affect both the cell membrane and the intracellular organelles of the cells. In particular, intracellular release of calcium from the endoplasmic reticulum was detected in real time using the device, after exposure of adherent cells to these nsPEFs. The high intensity and spatial homogeneity of the electric field could be achieved in the device thanks to the miniaturization and the use of thick (25 μm) electroplated electrodes, disposed on a quartz substrate whose transparency allowed real time monitoring of the nsPEFs effects. The proposed biochip is compatible with cell culture glass slides that can be placed on the chip after separate culture of several days prior to exposure. This device allows the easy exposure of almost any kind of attached cells and the monitoring in real time while exposed to nsPEFs, opening large possibilities for potential use of the developed biochips.
C Dalmay; M A De Menorval; O Français; L M Mir; B Le Pioufle
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-5
Journal Detail:
Title:  Lab on a chip     Volume:  -     ISSN:  1473-0189     ISO Abbreviation:  Lab Chip     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-5     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101128948     Medline TA:  Lab Chip     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
SATIE, CNRS, Ecole Normale Supérieure de Cachan, 61 av du Pdt Wilson, Cachan, France.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Irreversible Electroporation in Porcine Liver: Short- and Long-Term Effect on the Hepatic Veins and ...
Next Document:  Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hor...