Document Detail

mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle.
MedLine Citation:
PMID:  23372143     Owner:  NLM     Status:  Publisher    
Resistance training-induced muscle anabolism and subsequent hypertrophy occur most rapidly during the early phase of training and become progressively slower over time. Currently, little is known about the intracellular signaling mechanisms underlying changes in the sensitivity of muscles to training stimuli. We investigated the changes in the exercise-induced phosphorylation of hypertrophic signaling proteins during chronic resistance training and subsequent detraining. Male rats were divided into 4 groups: 1 bout (1B), 12 bouts (12B), 18 bouts (18B), and detraining (DT). In the DT group, rats were subjected to 12 exercise sessions, detrained for 12 days, and then were subjected to 1 exercise session before being sacrificed. Isometric training consisted of maximum isometric contraction was produced by percutaneous electrical stimulation of the gastrocnemius muscle every other day. Muscles were removed 24 h after the final exercise session. Levels of total and phosphorylated p70S6K, 4E-BP1, rpS6, and p90RSK levels were measured, and phosphorylation of p70S6K, rpS6, and p90RSK was elevated in the 1B group compared to control muscle (CON) after acute resistance exercise, while repeated bouts of exercise suppressed those phosphorylation in both 12B and 18B groups. Interestingly, these phosphorylation levels were restored following 12 days of detraining in the DT group. On the contrary, phosphorylation of 4E-BP1 was not altered with chronic training and detraining, indicating that with chronic resistance training, anabolic signaling becomes less sensitive to resistance exercise stimuli, but is restored after a short detraining period.
Riki Ogasawara; Koji Kobayashi; Arata Tsutaki; Kihyuk Lee; Takashi Abe; Satoshi Fujita; Koichi Nakazato; Naokata Ishii
Related Documents :
24149953 - Effects of the menstrual cycle on expiratory resistance during whole body exercise in f...
1505543 - Cardiovascular responses in paraplegic subjects during arm exercise.
10480613 - Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during d...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-31
Journal Detail:
Title:  Journal of applied physiology (Bethesda, Md. : 1985)     Volume:  -     ISSN:  1522-1601     ISO Abbreviation:  J. Appl. Physiol.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-2-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8502536     Medline TA:  J Appl Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
1Ritsumeikan University.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Interindividual relationships between blood pressure and cerebral blood flow variability in the pres...
Next Document:  Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma.