Document Detail

The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule.
MedLine Citation:
PMID:  23014881     Owner:  NLM     Status:  Publisher    
Acquiring a mechanistic understanding of the processes underlying the renal clearance of drug molecules in man has been hampered by a lack of robust in vitro models of human proximal tubules. Several human renal epithelial cell lines derived from the renal cortex are available, but few have been characterised in detail in terms of transporter expression. This includes the HK-2 proximal tubule cell line, which has been used extensively as a model of nephrotoxicity. The aim of this study was to investigate the expression and function of drug transporters in HK-2 cells and their suitability as an in vitro model of the human proximal tubule. qPCR showed no mRNA expression of the SLC22 transporter family (OAT1, OAT3, OCT2) in HK-2 cells compared to renal cortex samples. In contrast, SLC16A1 (MCT1), which is important in the uptake of monocarboxylates, and SLCO4C1 (OATP4C1) were expressed in HK-2 cells. The functional expression of these transporters was confirmed by uptake studies using radiolabelled prototypic substrates DL-lactate and digoxin, respectively. The mRNA expression of apical membrane efflux transporters ABCB1 (MDR1) and several members of the ABCC family (multidrug resistance proteins, MRPs) was shown by qPCR. ABCG1 (BCRP) was not detected. The efflux of Hoechst 33342, a substrate for MDR1, was blocked by MDR1 inhibitor cyclosporin A, suggesting the functional expression of this transporter. Similarly, the efflux of the MRP-specific fluorescent dye glutathione methylfluorescein was inhibited by the MRP inhibitor MK571. Taken together, the results of this study suggest that HK-2 cells are of limited value as an in vitro model of drug transporter expression in the human proximal tubule.
Sarah E Jenkinson; Git W Chung; Ellen van Loon; Nur S Bakar; Abigail M Dalzell; Colin D A Brown
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-9-27
Journal Detail:
Title:  Pflugers Archiv : European journal of physiology     Volume:  -     ISSN:  1432-2013     ISO Abbreviation:  Pflugers Arch.     Publication Date:  2012 Sep 
Date Detail:
Created Date:  2012-9-27     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0154720     Medline TA:  Pflugers Arch     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Epithelial Cell Research Group, Institute for Cell and Molecular Biosciences, 1st Floor Cookson Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK,
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Airway smooth muscle STIM1 and Orai1 are upregulated in asthmatic mice and mediate PDGF-activated SO...
Next Document:  Evaluating the impact of interdisciplinary networking in environmental geochemistry and health: revi...