Document Detail


The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.
MedLine Citation:
PMID:  24915110     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in US biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.
Authors:
Patrick J McNamara; Timothy M LaPara; Paige J Novak
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-6-10
Journal Detail:
Title:  Environmental science & technology     Volume:  -     ISSN:  1520-5851     ISO Abbreviation:  Environ. Sci. Technol.     Publication Date:  2014 Jun 
Date Detail:
Created Date:  2014-6-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0213155     Medline TA:  Environ Sci Technol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Cyanuric Acid Hydrolase from Azorhizobium caulinodans ORS 571: Crystal Structure and Insights into a...
Next Document:  Hydrogen peroxide-induced antioxidant activities and cardiotonic glycoside accumulation in callus cu...