Document Detail


The genome of feline immunodeficiency virus.
MedLine Citation:
PMID:  8129613     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Feline immunodeficiency virus (FIV) is a member of the genus Lentivirus of the family Retroviridae. FIV can infect T lymphocytes and monocytes/macrophages in vitro and in vivo, and causes an acquired immunodeficiency syndrome-like disease in cats. Several isolates of FIV from geographically distant countries have been molecularly cloned. There is considerable heterogeneity especially in Env gene among the FIV isolates and they can be divided into two or more subgroups. Like other lentiviruses, FIV has a complex genome structure. Gag gene encodes matrix, capsid and nucleocapsid proteins, and Pol gene encodes protease, reverse transcriptase, dUTPase and integrase. The dUTPase is not present in the primate lentiviruses but present in the non-primate lentiviruses. Env gene encodes surface and transmembrane envelope glycoproteins. In addition to the structural and enzymatic proteins, at least three more genes (Vif, ORF A, Rev) are present in FIV. Vif is related to the infectivity of the cell-free viruses. Rev functions in the stability and transport of incompletely spliced viral RNAs from the nucleus to cytoplasm and is indispensable for virus replication. Although the Tat protein of the primate lentiviruses is essential for virus replication, ORF A (putative Tat gene) of FIV is not essential for virus replication in established feline T lymphoblastoid cell lines. However, the ORF A gene product is related to the efficient replication of the virus in primary peripheral blood lymphocytes. In the long terminal repeat (LTR) of FIV, there are many putative binding sites for enhancer/promoter proteins. Among these binding sites, the putative AP-1 site is important for basal promoter activity of the LTR and responsible for the T cell activation signal through protein kinase C, however the site is not required for the virus replication in established feline T lymphoblastoid cell lines. Comparative study of the molecular biology of lentiviruses revealed that the genome structure, splicing pattern and functional enhancer protein-binding sites of FIV are more similar to those of the ruminant lentiviruses than those of the primate lentiviruses.
Authors:
T Miyazawa; K Tomonaga; Y Kawaguchi; T Mikami
Related Documents :
6604033 - Human t-cell leukemia virus type i: induction of syncytia and inhibition by patients' s...
2537113 - Colony forming t lymphocyte deficit in the development of feline retrovirus induced imm...
6176633 - Demonstration of primary cytotoxic t cells in venous blood and cerebrospinal fluid of c...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't; Review    
Journal Detail:
Title:  Archives of virology     Volume:  134     ISSN:  0304-8608     ISO Abbreviation:  Arch. Virol.     Publication Date:  1994  
Date Detail:
Created Date:  1994-04-12     Completed Date:  1994-04-12     Revised Date:  2006-11-15    
Medline Journal Info:
Nlm Unique ID:  7506870     Medline TA:  Arch Virol     Country:  AUSTRIA    
Other Details:
Languages:  eng     Pagination:  221-34     Citation Subset:  IM; X    
Affiliation:
Department of Veterinary Microbiology, Faculty of Agriculture, University of Tokyo, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animals
Base Sequence
DNA, Viral
Genome, Viral*
Humans
Immunodeficiency Virus, Feline / genetics*
Molecular Sequence Data
Chemical
Reg. No./Substance:
0/DNA, Viral

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Pancreatoduodenectomy for hemosuccus pancreaticus in silent chronic pancreatitis.
Next Document:  Evaluation of a recombinant vaccinia virus containing pseudorabies (PR) virus glycoprotein genes gp5...