Document Detail

A gene-centric analysis of activated partial thromboplastin time and activated protein C resistance using the HumanCVD focused genotyping array.
Jump to Full Text
MedLine Citation:
PMID:  23188048     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Activated partial thromboplastin time (aPTT) is an important routine measure of intrinsic blood coagulation. Addition of activated protein C (APC) to the aPTT test to produce a ratio, provides one measure of APC resistance. The associations of some genetic mutations (eg, factor V Leiden) with these measures are established, but associations of other genetic variations remain to be established. The objective of this work was to test for association between genetic variants and blood coagulation using a high-density genotyping array. Genetic association with aPTT and APC resistance was analysed using a focused genotyping array that tests approximately 50 000 single-nucleotide polymorphisms (SNPs) in nearly 2000 cardiovascular candidate genes, including coagulation pathway genes. Analyses were conducted on 2544 European origin women from the British Women's Heart and Health Study. We confirm associations with aPTT at the coagulation factor XII (F12)/G protein-coupled receptor kinase 6 (GRK6) and kininogen 1 (KNG1)/histidine-rich glycoprotein (HRG) loci, and identify novel SNPs at the ABO locus and novel locus kallikrein B (KLKB1)/F11. In addition, we confirm association between APC resistance and factor V Leiden mutation, and identify novel SNP associations with APC resistance in the HRG and F5/solute carrier family 19 member 2 (SLC19A2) regions. In conclusion, variation at several genetic loci influences intrinsic blood coagulation as measured by both aPTT and APC resistance.
Authors:
Tom R Gaunt; Gordon D O Lowe; Debbie A Lawlor; Juan-Pablo Casas; Ian N M Day
Related Documents :
24221158 - Molecular heterogeneity and genetics of vicia faba seed storage proteins.
24385678 - Involvement of fibroblast growth factor receptor genes in benign prostate hyperplasia i...
23790978 - A behavioral-genetic investigation of bulimia nervosa and its relationship with alcohol...
23536868 - Ascertaining an appropriate diagnostic algorithm using egfr mutation-specific antibodie...
16201898 - Reference materials (rms) for analysis of the human factor ii (prothrombin) gene g20210...
4080738 - Growth regulation and the genetics of growth.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-11-28
Journal Detail:
Title:  European journal of human genetics : EJHG     Volume:  21     ISSN:  1476-5438     ISO Abbreviation:  Eur. J. Hum. Genet.     Publication Date:  2013 Jul 
Date Detail:
Created Date:  2013-06-13     Completed Date:  2013-11-04     Revised Date:  2014-01-09    
Medline Journal Info:
Nlm Unique ID:  9302235     Medline TA:  Eur J Hum Genet     Country:  England    
Other Details:
Languages:  eng     Pagination:  779-83     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Activated Protein C Resistance / genetics*
Blood Coagulation / genetics*
Blood Coagulation Disorders, Inherited / genetics*
Factor V / genetics
Factor XII / genetics
Female
Genetic Association Studies
Genotyping Techniques
Humans
Kallikreins / genetics*
Oligonucleotide Array Sequence Analysis
Partial Thromboplastin Time*
Polymorphism, Single Nucleotide
Protein C / genetics
Thromboplastin / genetics
Grant Support
ID/Acronym/Agency:
G0600705//Medical Research Council; PG/07/131/24254//British Heart Foundation; PG/07/131/24254//British Heart Foundation
Chemical
Reg. No./Substance:
0/Protein C; 0/factor V Leiden; 9001-24-5/Factor V; 9001-30-3/Factor XII; 9035-58-9/Thromboplastin; EC 3.4.21.-/Kallikreins
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-journal-id): 9302235
Journal ID (pubmed-jr-id): 8515
Journal ID (nlm-ta): Eur J Hum Genet
Journal ID (iso-abbrev): Eur. J. Hum. Genet.
ISSN: 1018-4813
ISSN: 1476-5438
Article Information
Download PDF

License:
nihms-submitted publication date: Day: 16 Month: 11 Year: 2012
Electronic publication date: Day: 28 Month: 11 Year: 2012
Print publication date: Month: 7 Year: 2013
pmc-release publication date: Day: 01 Month: 1 Year: 2014
Volume: 21 Issue: 7
First Page: 779 Last Page: 783
PubMed Id: 23188048
ID: 3682876
DOI: 10.1038/ejhg.2012.242
ID: EMS50181

A gene-centric analysis of activated partial thromboplastin time and activated protein C resistance using the HumanCVD focused genotyping array
T.R. Gaunt*
G.D.O. Lowe
D.A. Lawlor*
J-P. Casas§
I.N.M. Day*
*MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
Institute of Cardiovascular & Medical Sciences, Room 335, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
§Department of Epidemiology and Public Health, University College London, 1-19 Torrington place, London, WC1E 6BT, UK
Correspondence: Corresponding author: T.R. Gaunt, MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. tom.gaunt@bristol.ac.uk. Phone: +44-117-3310132. Fax: +44-117-3310123.

Introduction

Blood coagulation is an important process in preventing blood loss from damaged vessels, but can also be responsible for thrombosis leading to ischaemic heart disease, stroke or venous thromboembolism1. An informative measure of efficacy of the intrinsic coagulation pathway is activated partial thromboplastin time (aPTT), measured as time taken for a clot to form in plasma in the absence of tissue factor following introduction of an activator (eg silica). An abnormally short aPTT can indicate a hypercoaguable state in acute coronary syndromes2, and is associated with increased risk of venous thrombosis35, whilst abnormally long aPTT may also indicate thrombotic risk in the case of the lupus anticoagulant6. Addition of activated protein C (APC), which deactivates factors Va and VIIIa, and calculation of an APC resistance provides one measure of APC resistance 7, including effects of factor V Leiden mutation as its major determinant8,9. There is evidence to suggest aPTT is highly heritable10, thus meriting investigation of its genetic basis, but to date the only high-density genetic association study of aPTT was a recently reported genome-wide association study (GWAS) of aPTT in 1477 subjects from the Lothian Birth Cohorts, which identified three novel loci associated with aPTT, namely: coagulation factor XII (F12), kininogen 1 (KNG1), and histidine-rich glycoprotein (HRG)11. The IL3581Thr variant in KNG1 has since been found to associate with risk of venous thrombosis as well as aPTT12. No genome-wide association studies has been reported for APC resistance.


Materials and Methods

Subjects were from the British Women’s Heart and Health Study (BWHHS), a prospective cohort study of heart disease in British women. Baseline recruitment was 1999-2001 (age 60-79 years), with blood samples for DNA, APC ratio and aPTT measurement taken from consenting individuals. Protocols and consents were approved by relevant research ethics committees13. aPTT measurements were available on 2962 women (mean age 68.8 years, SD 5.5), and APC resistance on 2953 women (mean age 68.8 years, SD 5.5). Data are not available where either insufficient blood was available to assay, consent was not given, or assays failed in the laboratory.

DNA was extracted from whole blood using a salting-out procedure14. Genotyping was successfully performed on 3445 of 3838 available samples using the Illumina HumanCVD Beadchip15. Principal components analysis was used to check self-reported ancestry, with 32 individuals excluded to avoid stratification issues, leaving 3413 samples for analysis. aPTT and APC resistance were assayed in an automated coagulometer (MDA-180, Organon Teknika, Cambridge, UK) using reagents and standards from the manufacturer as previously described16. APC ratio was assayed without factor V deficient plasma. Citrated plasma samples were stored at −80°C for a maximum of 12 months prior to assay. Genotype and phenotype data were available on 2618 women for aPTT (mean age 68.9 years, SD 5.5) and 2610 women for APC resistance (mean age 68.9 years, SD 5.5).

Analysis of genetic association was performed using linear regression without covariables (adjustment for age had little effect; whilst clotting phenotypes are age dependent this cohort are all post-menopausal and within the relatively narrow age-range 60-79 years.) using PLINK17. SNPs out of Hardy-Weinberg equilibrium (p < 0.0001) were excluded, as were any with a minor allele frequency below 0.1%, leaving 36,529 SNPs for analysis. Both traits were natural log transformed, outliers greater than 2.5 standard deviations from the mean were removed (on the basis that extreme values may represent either technical errors or biological abnormalities unrelated to common polymorphic variants which are the focus of our analyses), and warfarin users excluded, leaving 2510 participants with non-missing data for aPTT (arithmetic mean 30.06 seconds, SD 1.103 seconds) and 2500 with non-missing data for APC resistance (arithmetic mean 2.924, SD 1.134). Exclusion of women on hormone replacement therapy (HRT, shown to associate with these measures16) was evaluated, but did not substantially change the results. A stringent (given non-independence of many SNPs) Bonferroni correction for 36,529 tests gives a threshold of p = 1.37×10−6 as equivalent to a single-test p = 0.05. Variable selection was performed in R using Akaike Information Criterion (AIC)18 with the stepAIC function of the “MASS” library.


Results

Results of the HumanCVD BeadArray-wide association analysis with aPTT and APC resistance are presented in table 1, with results of variable selection presented in table 2. The SNPs most significantly associated with aPTT are in or near the F12 gene on chromosome 5. The top SNP rs2545801 is a non-coding SNP upstream of F12, p = 1.39 × 10−59), with an (antilogged) per-allele effect of 1.05 seconds on aPTT (95% CI 1.04-1.06). Other gene regions showing association include the HRG/KNG1 region on chromosome 3 (top hit SNP rs710446, p = 2.68 × 10−19), the ABO blood group (ABO) locus on chromosome 9 (rs657152, p = 2.45 × 10−11) and the kallikrein B (KLKB1) region on chromosome 4 (rs4253304, p = 1.67 × 10−7). Variable selection identified multiple statistically independent signals at each locus except KLKB1 (table 2).

Table 1 also presents genetic association results for APC resistance. The most strongly associated SNP with APC resistance is the factor V Leiden mutation (rs6025, p = 4.2 × 10−104) in the factor V (F5) gene on chromosome 1. The other region associated with APC resistance is the HRG region on chromosome 3 (top SNP rs16860992, p = 2.29 × 10−15).

Variable selection (table 2) suggests that all association with APC resistance in the F5 and solute carrier family 19 member 2 (SLC19A2) region on chromosome 1 is attributable to the functional factor V Leiden mutation, with no evidence of statistically independent effects for other SNPs. In the HRG region on chromosome 3 there are three potentially independent SNPs.


Discussion

Whilst the HumanCVD array is a candidate gene array, the coagulation pathway is well represented, with SNPs in the genes for the majority of intrinsic and extrinsic pathway proteins (table 3). We confirmed previous reports11 of effects in F12 (our “top hit” rs2545801 is the best HumanCVD tag of rs2731672, HapMap r2 = 0.935 19), KNG1 (“top hit” rs710446) and HRG (rs9898, significantly associated, but not our top hit at this locus). We also found positive associations with aPTT at the G protein-coupled receptor kinase 6 (GRK6) gene, genomically adjacent to the F12 gene, although low LD between the “top hit” SNPs at each locus suggests that these are marking independent effects (even if both the effects are actually in the F12 gene). GRK6 (G protein-coupled receptor kinase 6) deactivates G protein-coupled receptors, and thus may potentially also have a biological effect in the clotting mechanism. The results of variable selection suggest that there may be more than one causal site at each of the three main loci (excluding KLKB1).

We also found significant associations between aPTT and SNPs at the ABO and KLKB1 loci. Blood group O versus non-O becomes associated with lower levels of factor VIII and von Willebrand factor (vWF) during childhood20 and continues into adulthood 21. Assuming this relationship is causal, and given that aPTT is prolonged with both severe von Willebrand Disease (vWF deficiency in type 1 and 3) and Hemophilia A (factor VIII deficiency), we hypothesize that ABO genotype could associate with aPTT through alteration of levels of vWF or factor VIII. There is also a previous report describing association of ABO OO genotype with aPTT using a combined linkage and association approach22. Our highest ABO locus association is with rs657152, which is in high linkage disequilibrium (LD, r2=0.98)23 with rs8176719 (the O/non-O variant), and thus rs657152 closely marks the association of O blood group with clotting. SNP rs657152 is also in high LD (r2=0.93) with the myocardial infarction risk SNP reported by Reilly et al24, and hence likely to tag the functional mechanism of that risk. KLKB1 encodes plasma kallikrein B (Fletcher factor) 1, a glycoprotein which is involved in the intrinsic coagulation pathway25, and also neighbours the F11 locus, encoding the factor XI protein, an important factor in the intrinsic coagulation pathway.

We also present results for genetic associations with APC resistance. The HumanCVD array directly assays the factor V Leiden mutation (rs6025), which is known to influence the APC resistance26. This mutation shows the strongest genetic association with APC resistance in our dataset (p = 4.2 × 10−104). Although our other association signals in the F5 gene are with SNPs in little LD with rs6025 (eg r2 = 0.104), the magnitude of signal with rs6025 and results of variable selection (table 2) suggest these SNPs are simply showing a “bystander” effect. The other locus containing SNPs associating with APC resistance is HRG (same SNPs as with aPTT, and showing consistent direction of effect on both tests). HRG (histidine-rich glycoprotein) has a complex role in coagulation, with both anticoagulant and antifibrinolytic properties reported 27,28. In our data we observe concordant effects of HRG genotype on both aPTT (clotting speed) and APC resistance (response to inhibition). Whilst there is a SNP in SLC19A2 (the gene for solute carrier family 19 (thiamine transporter), member 2) this is physically close to the F5 gene on chromosome 1, so may simply tag functional variation in F5. Although variable selection excludes the SLC19A2 SNP (table 2), the LD between all our top hits in F5 (including rs6025) and the SLC19A2 SNP is very low (r2 < 0.006), suggesting this may either mark an independent effect in the F5 gene, or a biological relevance of thiamine transport in coagulation.

With the exception of the factor V Leiden mutation (rs6025), already known to influence APC resistance26, the majority of these results represent relatively small genetic effects on aPTT and APC resistance. They therefore have very limited predictive value (especially as individual variants), but instead offer additional insight into the functional pathways underlying blood coagulation.

Our study has three principal limitations: (i) The HumanCVD array is not “genome-wide”. Although even genome-wide arrays do not capture all genetic variation they offer a relatively unbiased representation of the genome. Table 3 illustrates the extent to which this candidate gene array represents coagulation system genes. (ii) The population we have analysed is female, of European ancestry, and represents a fairly narrow age-range (post-menopausal, 60-79 years). The results may therefore not be generalisable to other ancestries, males or younger people. Further studies are needed to examine the associations of newly identified genotypes with risk of venous and arterial thrombosis. (iii) These phenotypes (in particular APC resistance) are infrequently measured on a cohort scale, and we were unable to identify a suitable replication cohort with both these measures and appropriate genotyping data. Appropriate caution should therefore be applied in interpreting results close to our significance threshold. Our replication of published aPTT GWAS results11 and the very strong statistical evidence (most of our reported p-values several orders of magnitude below the nominal HumanCVD significance threshold of 1×10−6) support the reliability of these findings.

In conclusion, we have both confirmed previous reports that F12/GRK6, KNG1 and HRG are associated with aPTT11 and identified new SNPs at ABO and new genomic locus KLKB1 associated with aPTT. We also present the first high-density genetic association analysis of APC resistance, and identify signals in the F5 and HRG genomic regions. Our findings suggest that KLKB1 and HRG may play potentially important roles in blood coagulation.


Notes

FN1Conflict of Interest The authors declare that they have no conflicts of interest.

Acknowledgements

We thank all participants and the GPs, nurses and staff who supported data collection and preparation.

Sources of Funding The British Women’s Heart and Health Study has been supported by funding from the British Heart Foundation and the Department of Health Policy Research Programme (England). Genotyping work was funded by the BHF (PG/07/131/24254). TRG, DAL and INMD work in a Centre that receives core funding from the UK Medical Research Council (G0600705) and the University of Bristol.


References
1. Lowe GDO. Can haematological tests predict cardiovascular risk? The 2005 Kettle LectureBr. J. HaematolYear: 200613323225016643425
2. Abdullah WZ,Moufak SK,Yusof Z,Mohamad MS,Kamarul IM. Shortened activated partial thromboplastin time, a hemostatic marker for hypercoagulable state during acute coronary eventTransl ResYear: 201015531531920478546
3. Lowe GD,Haverkate F,Thompson SG,et al. Prediction of deep vein thrombosis after elective hip replacement surgery by preoperative clinical and haemostatic variables: the ECAT DVT StudyEuropean Concerted Action on Thrombosis. Thromb. HaemostYear: 199981879886
4. Tripodi A,Chantarangkul V,Martinelli I,Bucciarelli P,Mannucci PM. A shortened activated partial thromboplastin time is associated with the risk of venous thromboembolismBloodYear: 20041043631363415297315
5. Korte W,Clarke S,Lefkowitz JB. Short activated partial thromboplastin times are related to increased thrombin generation and an increased risk for thromboembolismAm. J. Clin. PatholYear: 200011312312710631865
6. Alving BM,Baldwin PE,Richards RL,Jackson BJ. The dilute phospholipid APTT: a sensitive assay for verification of lupus anticoagulantsThromb. HaemostYear: 1985547097123937268
7. Dahlbäck B,Carlsson M,Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein CProc Natl Acad Sci U S AYear: 199390100410088430067
8. De Stefano V,Leone G. Resistance to activated protein C due to mutated factor V as a novel cause of inherited thrombophiliaHaematologicaYear: 1995803443567590506
9. Dahlbäck B,Hildebrand B. Inherited resistance to activated protein C is corrected by anticoagulant cofactor activity found to be a property of factor VProc Natl Acad Sci U S AYear: 199491139614008108421
10. Warren DM,Soria JM,Souto JC,et al. Heritability of hemostasis phenotypes and their correlation with type 2 diabetes status in Mexican AmericansHum. BiolYear: 20057711516114812
11. Houlihan LM,Davies G,Tenesa A,et al. Common variants of large effect in F12, KNG1, and HRG are associated with activated partial thromboplastin timeAm. J. Hum. GenetYear: 20108662663120303064
12. Morange P-E,Oudot-Mellakh T,Cohen W,et al. KNG1 Ile581Thr and susceptibility to venous thrombosisBloodYear: 20111173692369421270443
13. Lawlor DA,Day INM,Gaunt TR,et al. The association of the PON1 Q192R polymorphism with coronary heart disease: findings from the British Women’s Heart and Health cohort study and a meta-analysisBMC GenetYear: 200451715214960
14. Miller SA,Dykes DD,Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cellsNucleic Acids ResYear: 19881612153344216
15. Keating BJ,Tischfield S,Murray SS,et al. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studiesPLoS ONEYear: 20083e358318974833
16. Lowe GD,Rumley A,Woodward M,Reid E,Rumley J. Activated protein C resistance and the FV:R506Q mutation in a random population sample--associations with cardiovascular risk factors and coagulation variablesThromb. HaemostYear: 19998191892410404768
17. Purcell S,Neale B,Todd-Brown K,et al. PLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. GenetYear: 20078155957517701901
18. Akaike H. A new look at the statistical model identificationAutomatic Control, IEEE Transactions onYear: 197419716723
19. The International HapMap ConsortiumA haplotype map of the human genomeNatureYear: 20054371299132016255080
20. Klarmann D,Eggert C,Geisen C,et al. Association of ABO(H) and I blood group system development with von Willebrand factor and Factor VIII plasma levels in children and adolescentsTransfusionYear: 2010501571158020210927
21. Gill JC,Endres-Brooks J,Bauer PJ,Marks WJ Jr,Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand diseaseBloodYear: 198769169116953495304
22. Souto JC,Almasy L,Muñiz-Diaz E,et al. Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin timeArterioscler. Thromb. Vasc. BiolYear: 2000202024202810938027
23. Teupser D,Baber R,Ceglarek U,et al. Genetic regulation of serum phytosterol levels and risk of coronary artery diseaseCirc Cardiovasc GenetYear: 2010333133920529992
24. Reilly MP,Li M,He J,et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studiesLancetYear: 201137738339221239051
25. Saito H. Bloom AL,Forbes CD,Thomas DP,Tuddenham EGDHaemostasis & ThrombosisYear: 1994289308Churchill Livingstone
26. Bertina RM,Koeleman BP,Koster T,et al. Mutation in blood coagulation factor V associated with resistance to activated protein CNatureYear: 199436964678164741
27. Tsuchida-Straeten N,Ensslen S,Schäfer C,et al. Enhanced blood coagulation and fibrinolysis in mice lacking histidine-rich glycoprotein (HRG)J. Thromb. HaemostYear: 2005386587215869579
28. Poon IKH,Patel KK,Davis DS,Parish CR,Hulett MD. Histidine-rich glycoprotein: the Swiss Army knife of mammalian plasmaBloodYear: 20111172093210120971949

Article Categories:
  • Article

Keywords: aPTT, coagulation, genotype, SNP.

Previous Document:  Non-invasive prenatal testing for single gene disorders: exploring the ethics.
Next Document:  A new double substitution mutation in the MEN1 gene: a limited penetrance and a specific phenotype.