Document Detail

An efficient clustering algorithm for partitioning Y-short tandem repeats data.
Jump to Full Text
MedLine Citation:
PMID:  23039132     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Y-Short Tandem Repeats (Y-STR) data consist of many similar and almost similar objects. This characteristic of Y-STR data causes two problems with partitioning: non-unique centroids and local minima problems. As a result, the existing partitioning algorithms produce poor clustering results.
RESULTS: Our new algorithm, called k-Approximate Modal Haplotypes (k-AMH), obtains the highest clustering accuracy scores for five out of six datasets, and produces an equal performance for the remaining dataset. Furthermore, clustering accuracy scores of 100% are achieved for two of the datasets. The k-AMH algorithm records the highest mean accuracy score of 0.93 overall, compared to that of other algorithms: k-Population (0.91), k-Modes-RVF (0.81), New Fuzzy k-Modes (0.80), k-Modes (0.76), k-Modes-Hybrid 1 (0.76), k-Modes-Hybrid 2 (0.75), Fuzzy k-Modes (0.74), and k-Modes-UAVM (0.70).
CONCLUSIONS: The partitioning performance of the k-AMH algorithm for Y-STR data is superior to that of other algorithms, owing to its ability to solve the non-unique centroids and local minima problems. Our algorithm is also efficient in terms of time complexity, which is recorded as O(km(n-k)) and considered to be linear.
Authors:
Ali Seman; Zainab Abu Bakar; Mohamed Nizam Isa
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-10-06
Journal Detail:
Title:  BMC research notes     Volume:  5     ISSN:  1756-0500     ISO Abbreviation:  BMC Res Notes     Publication Date:  2012  
Date Detail:
Created Date:  2013-02-14     Completed Date:  2013-06-21     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  101462768     Medline TA:  BMC Res Notes     Country:  England    
Other Details:
Languages:  eng     Pagination:  557     Citation Subset:  IM    
Affiliation:
Center for Computer Sciences, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. aliseman@tmsk.uitm.edu.my
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Algorithms*
Alleles
Chromosomes, Human, Y*
Cluster Analysis
Computational Biology / methods*
Databases, Genetic
Haplotypes*
Humans
Microsatellite Repeats*
Pattern Recognition, Automated / statistics & numerical data*
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BMC Res Notes
Journal ID (iso-abbrev): BMC Res Notes
ISSN: 1756-0500
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2012 Seman et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 1 Month: 3 Year: 2012
Accepted Day: 22 Month: 9 Year: 2012
collection publication date: Year: 2012
Electronic publication date: Day: 6 Month: 10 Year: 2012
Volume: 5First Page: 557 Last Page: 557
PubMed Id: 23039132
ID: 3571976
Publisher Id: 1756-0500-5-557
DOI: 10.1186/1756-0500-5-557

An efficient clustering algorithm for partitioning Y-short tandem repeats data
Ali Seman1 Email: aliseman@tmsk.uitm.edu.my
Zainab Abu Bakar1 Email: zainab@tmsk.uitm.edu.my
Mohamed Nizam Isa2 Email: nizam.isa@gmail.com
1Center for Computer Sciences, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
2Medical Faculty, Masterskill University College of Health Sciences, No. 6, Jalan Lembah, Bandar Seri Alam, 81750, Johor Bahru, Johor, Malaysia

Background

Y-Short Tandem Repeats (Y-STR) data represent the number of times an STR motif repeats on the Y-chromosome. It is often called the allele value of a marker. For example, if there are eight allele values for the DYS391 marker, the STR would look like the following fragments: [TCTA] [TCTA] [TCTA] [TCTA] [TCTA] [TCTA] [TCTA] [TCTA]. The number of tandem repeats has effectively been used to characterize and differentiate between two people.

In modern kinship analyses, the Y-STR is very useful for distinguishing lineages and providing information about lineage relationships [1]. Many areas of study, including genetic genealogy, forensic genetics, anthropological genetics, and medical genetics, have taken advantage of the Y-STR method. For example, it has been used to trace a similar group of Y-surname projects to support traditional genealogical studies, e.g., [2-4]. Further, in forensic genetics, the Y-STR is one of the primary concerns in human identification for sexual assault cases [5], paternity testing [6], missing persons [7], human migration patterns [8], and the reexamination of ancient cases [9].

From a clustering perspective, the goal of partitioning Y-STR data is to group a set of Y-STR objects into clusters that represent similar genetic distances. The genetic distance of two Y-STR objects is based on the mismatch results from comparing the Y-STR objects and their modal haplotypes. For Y-surname applications, if two people share 0, 1, 2, and 3 allele value mismatches for each marker, they are considered to be the most familially related. Furthermore, for Y-haplogroup applications, the number of mismatches is variant and greater than that typically found in Y-surname applications. This is because the haplogroup application is based on larger family groups branched out from the same ancestor, covering certain geographical areas and ethnicities throughout the world. The established Y-DNA haplogroups named by the letters A to T, with further subdivisions using numbers and lower case letters, are now available for reference (see [10] and [11] for details).

Efforts to group Y-STR data based on genetic distances have recently been reported. For example, Schlecht et al. [12] used machine learning techniques to classify Y-STR fragments into related groups. Furthermore, Seman et al. [13-19] used partitional clustering techniques to group Y-STR data by the number of repeats, a method used in genetic genealogy applications. In this study, we continue efforts to partition the Y-STR data based on the partitional clustering approaches carried out in [13-19]. Recently, we have also evaluated eight partitional clustering algorithms over six Y-STR datasets [19]. As a result, we found that there is scope to propose a new partitioning algorithm to improve the overall clustering results for the same datasets.

A new partitioning algorithm is required to handle the characteristics of Y-STR data, thus producing better clustering results. Y-STR data are slightly unique compared to the common categorical data used in [20-25]. The Y-STR data contain a higher degree of similarity of Y-STR objects in their intra-classes and inter-classes. (Note that the degree of similarity is based on the mismatch results when comparing the objects and their modal haplotypes.) For example, many Y-STR surname objects are found to be similar (zero mismatches) and almost similar (1, 2, and 3 mismatches) in their intra-classes. In some cases, the mismatch values of inter-class objects are not obviously far apart. Y-STR haplogroup data contain similar, almost similar, and also quite distant objects. Occasionally, the Y-STR haplogroup data may include sub-classes that are sparse in their intra-classes.

Partitional clustering algorithms

Classically, clustering has been divided into hierarchical and partitional methods. The main difference between the two is that the hierarchical method breaks the data up into hierarchical clusters, whereas the partitional method divides the data into mutually disjoint partitions. The pillar of the partitional algorithms is the k-Means algorithm [26], introduced almost four decades ago. As a consequence, the k-Means paradigm has been extended to various versions, including the k-Modes algorithm [25] for categorical data.

The k-Modes algorithm owes its existence to the ineffectiveness of the k-Means algorithm for handling categorical data. Ralambondrainy [27] attempted to rectify this using a hybrid numeric–symbolic method based on the binary characters 0 and 1. However, this approach suffered from an unacceptable computational cost, particularly when the categorical attributes had many categories. Since then, a variety of k-Modes-type algorithms have been introduced, such as k-Modes with new dissimilarity measures [21,22], k-Population [23], and a new Fuzzy k-Modes [20].

Partitional algorithms use an objective function in their optimization process, and the determination of this function was described as the P problem by Bobrowski and Bezdek [28] and Salim and Ismail [29]. When he proposed the k-Modes clustering algorithm, Huang [25] split P into P1 and P2. P1 denotes the minimization problem of obtaining values for the partition matrix wli of 0 or 1 (for the hard clustering approach) or 0 to 1 (for the fuzzy clustering approach); see Eq. (1b) as an example. Furthermore, P2 denotes the minimization problem of obtaining the value that occurs most often (or the mode of a categorical data set) to represent the center of a cluster (often called the centroid). The minimization of P2 by obtaining the appropriate mode essentially causes the minimization of problem P2, and vice versa. As an example of the optimization process for problem P in the Fuzzy k-Modes algorithm, we wish to solve Eq. (1) subject to Eqs. (1a), (1b), and (1c).

[Formula ID: bmcM1]
(1) 
PW,Z=∑l=1k∑i=1nwli∝dXi,Zl

subject to:

[Formula ID: bmcM1a]
(1a) 
∑l=1kwli=1,1≤i≤n,

[Formula ID: bmcM1b]
(1b) 
wli∈0,1,1≤i≤n,1≤l≤k

And

[Formula ID: bmcM1c]
(1c) 
0<∑i=1nwli<n,1≤l≤k

where:

wli is a (k × n) partition matrix that denotes the degree of membership of object i in the lth cluster that contains a value of 0 to 1,

k (≤ n) is a known number of clusters,

Z is the centroid such that [Z1, Z2,…,Zk] ∈ Rmk,

• α [1, ∞) is a weighting exponent,

d(Xi, Zl) is the distance measure between the object Xi and the centroid Zl, as described in Eqs. (2) and (2a).

[Formula ID: bmcM2]
(2) 
dx,z=∑j=1nδxj,zj

where:

[Formula ID: bmcM2a]
(2a) 
δxj,zj={0,xj=zj1,xj≠zj

Huang and Ng [24] described the optimization process of P1 and P2 as follows:

• Problem P1: Fix Z = Z^ and solve the reduced problem P(W,Z^) as in Eq. (3). This process obtains the minimized values of 0–1 of the partition matrix wli.

[Formula ID: bmcM3]
(3) 
wli={1,IfXi=Z^l0,IfXi=Z^h,h≠l1∑h=1kdXi,Z^ldXi,Z^h1α−1,IfXi≠Z^l,andXi≠X^h,1≤h≤k

• Problem P2: Fix W = Ŵ and solve the reduced problem P(Ŵ, Z) as in Eq. (4) subject to Eq. (4a). This process obtains the most frequent attributes, or the modes, which give the centroids.

[Formula ID: bmcM4]
(4) 
Zli=ajp∈DOMAj

where:

[Formula ID: bmcM4a]
(4a) 
∑i,xi,j=ajpwli∝≥∑i,xi,j=ajtwli∝∀l,1≤t≤nj,1≤≤m

and α ∈ [1, ∞) is a weighting exponent.

Problem of partitioning Y-STR data

Due to the characteristics of Y-STR data, there are two optimization problems for existing partitional algorithms: non-unique centroids and local minima problems. These two problems are caused by the drawback of the modes mechanism of determining the centroids. Non-unique centroids would result in empty clusters, whereas the local minima problem leads to poorer clustering results. Both problems are a result of the obtained centroids, which are not sufficient to represent their classes.

Therefore, problems will occur for the following two cases:

i)The total number of objects in a dataset is small while the number of classes is large. To illustrate this case, consider the following example.

Example I: Figure 1 shows an artificial example of a dataset consisting of nine objects in three classes: Class A = {A1, A2, A3}, Class B = {B1, B2, B3}, and Class C = {C1, C2, C3}. Each object is composed of three attributes, represented in lower case; e.g., for object A1, the attributes are a1, a2, and a3. The dataset is considered to have a higher degree of similarity between objects in intra-classes, while the number of objects is small and number of classes is large. Thus, the appropriate modes for representing the classes are: Class A – [a1, a2, a3], lass B – [a1, b2, c3], and Class C – [b1, c2, d4]. However, attribute a1 in DOMAIN (A1), a2 in DOMAIN (A2), and c3 in DOMAIN (A3) are too dominant, and would therefore dominate the process of updating P2. Figure 2 shows the possibility that each cluster is formed by the dominant attributes.

As a result, the mode that consists of [a1, a2, c3] would be obtained twice. Thus, P2 would not be minimized due to this non-unique centroid. Another possibility is that the two modes are different, but are not distinctive enough to represent their clusters, such as modes [a1, a2, a3] or [a1, a2, b3] for Cluster 2. As a consequence, this case would fall into a local minima problem.

ii)An extreme distribution of objects in a class. To illustrate this case, consider the following example.

Example II: Figure 3 shows a dataset consisting of eight objects in two classes: Class A = {A1, A2, A3, A4, A5, A6} and Class B = {B1, B2}. Each object consists of three attributes, again represented in lower case. The appropriate modes to represent the classes are: Class A – [a1, a2, b3] and Class B – [a1, b2, c3] or [a1, b2, d3]. The distribution of objects in Class A is considerably larger than in Class B, covering approximately 75% of the total set of objects. This characteristic of the data is found to be problematic for P2, particularly for the fuzzy approach. The problem is actually caused by the initial centroid selection. Figure 4 shows the objects in Class A would be equally distributed into clusters 1 and 2.

As a result, object A becomes dominant in both clusters, and so the obtained modes might be represented solely by objects in Class A, e.g., [a1, a2, a3] and [a1, a2, b3].

The above situations cause P not to be fully optimized, thus producing poor clustering results. Therefore, a new algorithm with a new concept of P2 is proposed in order to overcome these problems and improve the clustering accuracy results of Y-STR data.


Methods
The center of a cluster

The mode mechanism for the center of a cluster (problem P2) is not appropriate for handling the characteristics of Y-STR data, and therefore, it cannot be used as a mechanism to represent the center of a cluster (centroid). Instead, the center of Y-STR data should be the modal haplotypes, which are required to calculate the distance of Y-STR objects. The distance between a Y-STR object and its modal haplotype can be formalized as in Eq. (5) subject to Eq. (5a).

[Formula ID: bmcM5]
(5) 
dystrX,H=∑j=1mxj,hj

subject to:

[Formula ID: bmcM5a]
(5a) 
yxj,hj={0,xj=hj1,xj≠hj

where m is the number of markers.

The modal haplotype is controlled by groups of objects that are similar or almost similar in Y-STR data. The similar and almost similar objects have a lower distance, or a higher degree of membership values in a fuzzy sense. Thus, these two groups are considerably the most dominant objects required to find the Approximate Modal Haplotype. Consider four objects x1, x2, x3, and x4 and two clusters c1 and c2. The membership value for each object and its cluster are as shown in Table 1, whereby objects x1 and x3 have a 100% chance of being the most dominant object in cluster c1, but only a 50% chance of being the dominant object in cluster c2, and so on. A dominant weighting value of 1.0 is given to any dominant object and a weight of 0.5 is given to the remaining objects.

The k-AMH algorithm

Let X ={X1, X2,…, Xn} be a set of n Y-STR objects and A ={A1,A2,…, Am} be a set of markers (attributes) of a Y-STR object. Let H = {H1, H2,.,Hk} ∈ X be the set of Approximate Modal Haplotypes for k clusters. Suppose k is known a priori. Let Hl be the Approximate Modal Haplotype, represented as [hl,1, hl,2,…,hl,m], and therefore, Hl,j = Xi,j for 1≤ j ≤ m and 1≤ i ≤ n. The objective of the algorithm is to partition the categorical objects X into k clusters. Thus, the Hl can be replaced by Xi until n provided they satisfy the condition described in Eq. (6).

[Formula ID: bmcM6]
(6) 
PÁs>PÁt,s≠t;∀t,1≤t≤n−k.

Here, P(Á) is the cost function described in Eq. (7), which is subject to Eqs. (7a), (8), (8a), (8b), (9), (9a), (9b), and (9c).

[Formula ID: bmcM7]
(7) 
PÁ=∑l=1k∑i=1nÁli

subject to:

[Formula ID: bmcM7a]
(7a) 
Áli=Wli∝Dli

Wli is a (k × n) partition matrix that denotes the degree of membership of Y-STR object i in the lth cluster that contains a value of 0 to 1 as described in Eq. (8), subject to Eqs. (8a) and (8b).

[Formula ID: bmcM8]
(8) 
Wli∝={1,If,Xi=Hi0,If,Xi=Hz,z≠l1∑z=1kdystrXi,HldystrXi,Hz1∝−1,IfHi≠XjandXi≠Hz,1≤z≤k∝

• subject to:

[Formula ID: bmcM8a]
(8a) 
wli∝∈0,1,1≤i≤n,1≤l≤k,

and

[Formula ID: bmcM8b]
(8b) 
0<∑i=1nwli∝<n,1≤l≤k

where,

k (≤ n) is a known number of clusters.

H is the Approximate Modal Haplotype (centroid) such that [H1, H2,…,Hk] ∈ X.

• α ∈ [1, ∞) is a weighting exponent and used to increase the precision of the membership degrees. Note that this alpha is typical based on 1.1 until 2.0 as introduced by Huang and Ng [24].

dystr(Xi,Hl) is the distance measure between the Y-STR object Xi and the Approximate Modal Haplotype Hl as described in Eq. (5) and subject to Eq.(5a).

Dli is another (k × n) partition matrix which contains a dominant weighting value of 1.0 or 0.5, as explained above (See Table 1). The dominant weighting values are based on the value of Wli above. Dli is described in Eq. (9), subject to Eqs. (9a), (9b), and (9c).

[Formula ID: bmcM9]
(9) 
dli={1.0,ifwli∝=maxwli∝,1≤l≤k0.5,otherwise

subject to:

[Formula ID: bmcM9a]
(9a) 
dli∈1,0.5,1≤i≤n,1≤lk

[Formula ID: bmcM9b]
(9b) 
1.5≤∑l=1kdli≤k,1≤i≤n

[Formula ID: bmcM9c]
(9c) 
1.5≤∑l=1kdli≤n,1≤i≤k

The basic idea of the k-AMH algorithm is to find k clusters in n objects by first randomly selecting an object to be the Approximate Modal Haplotype h for each cluster. The next step is to iteratively replace the objects x one-by-one towards the Approximate Modal Haplotype h. The replacement is based on Eq. (6) if the cost function as described in Eq. (7) and subject to (7a), (8), (8a), (8b), (9), (9a), (9b) and, (9c) is maximized. Thus, the differences between the k-AMH algorithm and the other k-Mode-type algorithms are as follows.

i. The objects (the data themselves) are used as the centroids instead of modes. Since the distance of Y-STR objects is measured by comparing the objects and their modal haplotypes, we need to approximately find the objects that can represent the modal haplotypes. In finding the final Approximate Modal Haplotype for a particular group (cluster), each object needs to be tested one-by-one and replaced on a maximization of a cost function.

ii. A maximization process of the cost function is required instead of minimizing it as in the k-mode-type algorithms.

A detailed description of the k-AMH algorithm is given below.

Step 1 – Select k initial objects randomly as Approximate Modal Haplotype (centroids). E.g. if k = 4, then choose randomly 4 objects as the initial Approximate Modal Haplotype.

Step 2 – Calculate distance dystr(Xi,Hl) according to Eq. (5) and subject to (5a).

Step 3 – Calculate partition matrix wli according to Eq. (8), subject to Eqs. (8a) and (8b). Note that the wli is based on the distance calculated in Step 2.

Step 4 – Assign a weighting dominant of 1.0 or 0.5 for partition matrix Dli according to Eqs. (9), (9a), (9b) and (9c).

Step 5 – Calculate cost function P(Á) based on WliDli according to Eqs (7) and (7a).

Step 6 – Test for each initial modal haplotype by the other objects one-by-one. If current cost function is greater than previous cost function according to Eq. (6), then replace it.

Step 7 – Repeat Step 2 until Step 6 for each x and h

Step 8 – Once the final Approximate Modal Haplotypes are obtained for all clusters, assign the objects to their corresponding crisp clusters Cli according to Eq. (10).

[Formula ID: bmcM10]
(10) 
Cli={1,ifl=argmaxwli∝,1≤j≤c0,otherwise

Furthermore, the implementation of the steps above of the algorithm is formalized in the form of pseudo-code as follows.

INPUT: Dataset, X, the number of cluster, k, the number of dimensional, d and the fuzziness index,

OUTPUT: A set of clusters, k

01: Select Hl randomly from Xsuch that 1≤l≤ k

02: for each Hl an Approximate Modal Haplotype do

03: for each Xi do

04: Calculate P(À)  =   ∑ l = 1k ∑ i = 1nÀli

05: if P(À)  =   ∑ l = 1k ∑ i = 1nÀli is maximized, then

06: Replace Hl by Xi

07: end if end for

09: end for

10: Assign Xi to Cl for all l, 1≤ lk; 1≤in as Eq. (10)

11: Output Results

Optimization of the problem P

In optimizing the problem P, the k-AMH algorithm uses a maximization process instead of the minimization process imposed by the k-Mode-type algorithms. This process is formalized in the k-AMH algorithm as follows.

Step 1 - Choose an Approximate Modal Haplotype, H(t)∈ X. Calculate P(Á); Set t=1

Step 2 - Choose X(t+1) such that P(Á)t+1 is maximized; Replace H1 by X(t+1)

Step 3 - Set t=t+1; Stop when t=n; otherwise go to Step 2.

*Note:n is the number of objects

The convergence of the algorithm is proven as P1 and P2 are maximized accordingly. The function P(Á) incorporates the P(W, H) function imposed by the Fuzzy k-Modes algorithm, where W is a partition matrix and H is the approximate modal haplotype that defines the center of a cluster. Thus, P1 and P2 are solved by Theorems 1 and 2, respectively.

Theorem 1 – Let Ĥ be fixed. P(W, Ĥ) is maximized if and only if


Wli∝={1,If,Xi=Hi0,If,Xi=Hz,z≠l1∑z=1kdystrXi,HldystrXiHz1∝−1,IfHi≠XjandXi≠Hz,1≤z≤k∝

Proof

Let X= {X1,X2,.,Xn} be a set of n Y-STR categorical objects and H= {H1,H2,.,Hk} be a set of centroids (Approximate Modal Haplotypes) for k clusters. Suppose that P= {P1,P2,.,Pk} is a set of dissimilarity measures based on dystr(Xi,Hl), as described in Eqs. (5) and subject to (5a), ∀ i and l 1  ≤  i  ≤  n; 1  ≤  l  ≤  k

Definition 1 - For Xi  =  Hl and Xi  =  Hz, where z  ≠  l, the membership value for all i is


wli∝={1,ifXi=Hl0,ifXi=Hz,z≠l∝

For any P that is obtained from dystr(Xi,Hl) where Xi  =  Hl, the maximum value of wli is 1 and Xi  =  Hz, z  ≠  l the value of wli is 0. Therefore, because Hl is fixed, wli is maximized.

Definition 2 – For the case of Hi  ≠  Xiand XiHz,   ∀  z,  1  ≤  z  ≤  k, the membership value for all i is


wli∝={1∑z=1kdystrXi,H^ldystrXi,H^z1∝−1∝

Suppose that pliP is the minimum value, we write as


wli∝={1∑z=1kPliPzi1∝−1∝where1≤lk;1≤zk


={1PliP1i1∝−1+PliP2i1∝−1+PliPzi1∝−1+PliPki1∝−1∝

Therefore,


=PliPli1∝−1=1>=PliPzi1∝−1,

where zl

Thus, ∑z=1kPlizi1∝−1<∑z=1kPtiPzi1∝−1 where

tl and ∀  z and t,  1  ≤  z  ≤  k;  1  ≤  t  ≤  k It follows that


wli∝={1∑z=1kPliPzi1∝−1∝>1∑z=1kPtiPzi1∝−1∝

where tl

Therefore, based on definitions 1 and 2, wli is maximal. Because Ĥ is fixed, PW,H^ is maximized.

Theorem 2 – Let hlX be the initial center of a cluster for 1 ≤ l ≤ k. hl is replaced by xi as the Approximate Modal Haplotype if and only if


PÀs>PÀt;s≠t;∀t,1≤t≤n−k.

Proof

Let D= {D1,D2,.,Dk} be a set of dominant weighting values. For any maximum value of wli as proved by Theorem 1, we assign an optimum value of 1.0 as a dominant weighting value, otherwise 0.5 as described in Eq, (9) and subject to Eqs. (9a), (9b) and (9c). We write


PA=∑l=1k∑i=1nAli


=∑l=1k∑i=1nWliαDli

Because wli and Dli are non-negative, the product WliDli must be maximal. It follows that the sum of all quantities ∑ l = 1k ∑ i = 1nÁli is also maximal. Hence, the result follows.

Y-STR Datasets

The Y-STR data were mostly obtained from a database called worldfamilies.net [30]. The first, second, and third datasets represent Y-STR data for haplogroup applications, whereas the fourth, fifth, and sixth datasets represent Y-STR data for Y-surname applications. All datasets were filtered for standardization on 25 similar attributes (25 markers). The chosen markers include DYS393, DYS390, DYS19 (394), DYS391, DYS385a, DYS385b, DYS426, DYS388, DYS439, DYS389I, DYS392, DYS389II, DYS458, DYS459a, DYS459b, DYS455, DYS454, DYS447, DYS437, DYS448, DYS449, DYS464a, DYS464b, DYS464c, and DYS464b. These markers are more than sufficient for determining a genetic connection between two people. According to Fitzpatrick [31], 12 markers (Y-DNA12 test) are already sufficient to determine who does or does not have a relationship to the core group of a family.

All datasets were retrieved from the respective websites in April 2010, and can be described as follows:

1) The first dataset consists of 751 objects of the Y-STR haplogroup belonging to the Ireland yDNA project [32]. The data contain only 5 haplogroups, namely E (24), G (20), L (200), J (32), and R (475). Thus, k = 5.

2) The second dataset consists of 267 objects of the Y-STR haplogroup obtained from the Finland DNA Project [33]. The data are composed of only 4 haplogroups: L (92), J (6), N (141), and R (28). Thus, k = 4.

3) The third dataset consists of 263 objects obtained from the Y-haplogroup project [34]. The data contain Groups G (37), N (68), and T (158). Thus, k = 3.

4) The fourth dataset consists of 236 objects combining four surnames: Donald [35], Flannery [36], Mumma [37], and William [38]. Thus, k = 4.

5) The fifth dataset consists of 112 objects belonging to the Philips DNA Project [39]. The data consist of eight family groups: Group 2 (30), Group 4 (8), Group 5 (10), Group 8 (18), Group 10 (17), Group 16 (10), Group 17 (12), and Group 29 (7). Thus, k = 8.

6) The sixth dataset consists of 112 objects belonging to the Brown Surname Project [40]. The data consist of 14 family groups: Group 2 (9), Group 10 (17), Group 15 (6), Group 18 (6), Group 20 (7), Group 23 (8), Group 26 (8), Group 28 (8), Group 34 (7), Group 44 (6), Group 35 (7), Group 46 (7), Group 49 (10), and Group 91 (6). Thus, k = 14.

The values in parentheses indicate the number of objects belonging to that particular group. Datasets 1–3 represent Y-STR haplogroups and datasets 4–6 represent Y-STR surnames.


Results and discussion

The following results compare the performance of the k-AMH algorithm with eight other partitional algorithms: the k-Modes algorithm [25], k-Modes with RVF [21,22,41], k-Modes with UAVM [21], k-Modes with Hybrid 1 [21], k-Modes with Hybrid 2 [21], the Fuzzy k-Modes algorithm [24], the k-Population algorithm [23], and the New Fuzzy k-Modes algorithm [20].

Our analysis was based on the average accuracy scores obtained from 100 runs for each algorithm and dataset. During the experiments, the objects in the datasets were randomly reordered from the preceding run. The misclassification matrix proposed by Huang [25] was used to obtain the clustering accuracy scores for evaluating the performance of each algorithm. The clustering accuracy r defined by Huang [25] is given by Eq. (11):

[Formula ID: bmcM11]
(11) 
r=∑i=1kain

where k is the number of clusters, ai is the number of instances occurring in both cluster i and its corresponding haplogroup or surname, and n is the number of instances in the dataset.

Clustering performance

Table 2 shows the clustering accuracy scores for all datasets (boldface indicates the highest clustering accuracy). Based on these results, the performance of the k-AMH algorithm was very promising. Out of six datasets, our algorithm obtained the highest clustering accuracy scores for datasets 1, 2, 4, 5, and 6. In fact, the algorithm also achieved the optimal clustering accuracy for two datasets (4 and 5). However, for dataset 3, the results show that the accuracy of the k-AMH algorithm was 0.01 lower than that of the k-Population algorithm. A statistical t-test was carried out for further verification. This indicated that t(101.39) = 0.65, and p = 0.51. Thus, there was no significant difference at the 5% level between the accuracy score of our k-AMH algorithm and the k-Population algorithm. This means that both algorithms displayed an equal performance for this dataset.

During the experiments, the k-AMH algorithm did not encounter any difficulties. However, the Fuzzy k-Modes and the New Fuzzy k-Modes algorithms faced problems with datasets 1, 5, and 6. For dataset 1, the problem was caused by the extreme number of objects in Class R (475), which covered about 63% of the total objects. Further, for datasets 5 and 6, the problem was caused by many similar objects in a larger number of classes. In particular, both algorithms faced the problem P2 caused by the initial centroid selections. Note also that the results for both algorithms were based on the diverse method, an initial centroid selection proposed by Huang [25].

For an overall comparison, Table 3 shows the results of all Y-STR datasets. It clearly indicates that the k-AMH algorithm obtained the highest accuracy score of 0.93. The closest score of 0.91 belongs to the k-Population algorithm. Furthermore, the k-AMH algorithm also recorded the best results in terms of standard deviation (0.07), the lower bound (0.93), the upper bound (0.94), and the minimum accuracy score (0.79).

For further verification, a one-way ANOVA test was carried out. This indicated that the assumption of homogeneity of variance was violated; therefore, the Welch F-ratio is reported. There was a significant variance in the clustering accuracy scores among the nine algorithms, in which F(8, 2230) = 378, p < 0.001, and ω2 = 0.25. Thus, the Games–Howell procedure was used for a multiple comparison among the nine algorithms. Table 4 shows the result of this comparison with regard to the k-AMH algorithm against the other eight algorithms. At the 5% level of significance, it is clearly shown that the k-AMH algorithm (M = 0.93, 95% CI [0.93, 0.94]) differed from the other eight algorithms (all P values < 0.001). Thus, the performance of k-AMH algorithm exhibited a very significant difference compared to the other algorithms.

Efficiency

We now consider the time efficiency of the k-AMH algorithm. The computational cost of the algorithm depends on the nested loop for k(n-k), where k is the number of clusters and n is the number of data required to obtain the cost function, P(À). The function P(À) involves the number of attributes m in calculating the distances and the membership values for its partition matrix wli. Thus, the overall time complexity is O(km(n-k)). However, the time efficiency of the k-AMH algorithm will not reach O(n2) because the value of k in the outer loop will not become equivalent to the value of n-k in the inner loop. See pseudo-code for a detailed implementation of these loops.

A scalability test was also carried out for the k-AMH algorithm. These experiments were based on a dataset called Connect [42]. This dataset consisted of 65,000 data, 42 attributes, and three classes. Two scalability tests were conducted: (a) scalability against the number of objects, when the number of clusters was three, and (b) scalability against the number of clusters, when the number of objects was 65,000. The test was performed on a personal computer with an Intel® Core™ 2 DUO Processor with 2.93 GHz and 2.00 GB memory. Figure 5(a) and (b) illustrate the results of the tests. In conclusion, the runtime of the k-AMH algorithm increased linearly with the number of clusters and data.


Conclusions

Our experimental results indicate that the performance of the proposed k-AMH algorithm for partitioning Y-STR data was significantly better than that of the other algorithms. Our algorithm handled all problems, as described previously, and was not too sensitive to P0, the initial centroid selection, even though the datasets contained a lot of similar objects. Moreover, the concept of P2 in using the object (the data itself) as the approximate center of a cluster has significantly improved the overall performance of the algorithm. In fact, our algorithm is the most consistent of those tested because the difference between the minimum and maximum scores is smaller. The k-AMH algorithm always produces the highest minimum score for each dataset. In conclusion, the k-AMH algorithm is an efficient method of partitioning Y-STR categorical data.


Competing interests

The authors declare that they have no competing interests.


Authors' contributions

AS carried out the algorithm development and experiments. ZAB verified the algorithm and the results. MNI verified the Y-STR data and also the results. All authors read and approved the final manuscript.


Acknowledgements

This research is supported by Fundamental Research Grant Scheme, Ministry of Higher Eduction Malaysia. We would like to thank RMI, UiTM for their support for this research. We extend our gratitude to many contributors toward the completion of this paper, including Prof. Dr. Daud Mohamed, En. Azizian Mohd Sapawi, Puan Nuru'l-'Izzah Othman, Puan Ida Rosmini, and our research assistants: Syahrul, Azhari, Kamal, Hasmarina, Nurin, Soleha, Mastura, Fadzila, Suhaida, and Shukriah.


References
Kayser M,Kittler R,Erler A,Hedman M,Lee AC,Mohyuddin A,Mehdi SQ,Rosser Z,Stoneking M,Jobling MA,Sajantila A,Tyler-Smith C,A comprehensive survey of human Y-chromosomal microsatellitesAm J Hum GenetYear: 20047461183119710.1086/42153115195656
Perego UA,Turner A,Ekins JE,Woodward SR,The science of molecular genealogyNational Genealogical Society QuarterlyYear: 2005934245259
Perego UA,The power of DNA: Discovering lost and hidden relationshipsYear: 2005Oslo: World Library and Information Congress: 71st IFLA General Conference and Council Oslo
Hutchison LAD,Myres NM,Woodward S,Growing the family tree: The power of DNA in reconstructing family relationshipsProceedings of the First Symposium on Bioinformatics and Biotechnology (BIOT-04)Year: 200414249
Dekairelle AF,Hoste B,Application of a Y-STR-pentaplex PCR (DYS19, DYS389I and II, DYS390 and DYS393) to sexual assault casesForensic Sci IntYear: 200111812212510.1016/S0379-0738(00)00481-311311823
Rolf B,Keil W,Brinkmann B,Roewer L,Fimmers R,Paternity testing using Y-STR haplotypes: Assigning a probability for paternity in cases of mutationsInt J Legal MedYear: 2001115121510.1007/s00414000020111599763
Dettlaff-Kakol A,Pawlowski R,First polish DNA “manhunt” - an application of Y-chromosome STRsInt J Legal MedYear: 200211628929112376840
Stix G,Traces of the distant pastSci AmYear: 20082995663
Gerstenberger J,Hummel S,Schultes T,Häck B,Herrmann B,Reconstruction of a historical genealogy by means of STR analysis and Y-haplotyping of ancient DNAEur J Hum GenetYear: 1999746947710.1038/sj.ejhg.520032210352937
International Society of Genetic Genealogy http://www.isogg.org.
The Y Chromosome Consortium http://ycc.biosci.arizona.edu.
Schlecht J,Kaplan ME,Barnard K,Karafet T,Hammer MF,Merchant NC,Machine-learning approaches for classifying haplogroup from Y chromosome STR dataPLoS Comput BiolYear: 200846e100009310.1371/journal.pcbi.100009318551166
Seman A,Abu Bakar Z,Mohd Sapawi A,Centre-based clustering for Y-Short Tandem Repeats (Y-STR) as Numerical and Categorical dataProc. 2010 Int. Conf. on Information Retrieval and Knowledge Management (CAMP’10)Year: 201012833 Shah Alam, Malaysia.
Seman A,Abu Bakar Z,Mohd Sapawi A,Centre-Based Hard and Soft Clustering Approaches for Y-STR DataJournal of Genetic GenealogyYear: 20106119 Available online: http://www.jogg.info.
Seman A,Abu Bakar Z,Mohd Sapawi A,Attribute Value Weighting in K-Modes Clustering for Y-Short Tandem Repeats (Y-STR) SurnameProc. of Int. Symposium on Information Technology 2010 (ITsim’10)Year: 2010315311536 Kuala Lumpur, Malaysia.
Seman A,Abu Bakar Z,Mohd Sapawi A,Hard and Soft Updating Centroids for Clustering Y-Short Tandem Repeats (Y-STR) DataProc. 2010 IEEE Conference on Open Systems (ICOS 2010)Year: 20101611 Kuala Lumpur, Malaysia.
Seman A,Abu Bakar Z,Mohd Sapawi A,Modeling Centre-based Hard and Soft Clustering for Y Chromosome Short Tandem Repeats (Y‐STR) DataProc. 2010 International Conference on Science and Social Research (CSSR 2010)Year: 201017378 Kuala Lumpur, Malaysia.
Seman A,Abu Bakar Z,Mohd Sapawi A,Centre-based Hard Clustering Algorithm for Y-STR DataMalaysia Journal of ComputingYear: 201016273
Seman A,Abu Bakar Z,Isa MN,Evaluation of k-Mode-type Algorithms for Clustering Y-Short Tandem RepeatsJournal of Trends in BioinformaticsYear: 201252475210.3923/tb.2012.47.52
Ng M,Jing L,A new fuzzy k-modes clustering algorithm for categorical dataInternational Journal of Granular Computing, Rough Sets and Intelligent SystemsYear: 20091110511910.1504/IJGCRSIS.2009.026727
He Z,Xu X,Deng S,Attribute value weighting in k-Modes clusteringYear: 2007Ithaca, NY, USA: Cornell University Library, Cornell University115 available online: http://arxiv.org/abs/cs/0701013v1.
Ng MK,Junjie M,Joshua L,Huang Z,He Z,On the impact of dissimilarity measure in k-modes clustering algorithmIEEE Trans Pattern Anal Mach IntellYear: 200729350350717224620
Kim DW,Lee YK,Lee D,Lee KH,k-Populations algorithm for clustering categorical dataPattern RecognYear: 2005381131113410.1016/j.patcog.2004.11.017
Huang Z,Ng M,A Fuzzy k-Modes algorithm for clustering categorical dataIEEE Trans Fuzzy SystYear: 19997444645210.1109/91.784206
Huang Z,Extensions to the k-Means algorithm for clustering large datasets with categorical valuesData Min Knowl DiscovYear: 1998228330410.1023/A:1009769707641
MacQueen JB,Some methods for classification and analysis of multivariate observationsThe 5th Berkeley Symposium on Mathematical Statistics and ProbabilityYear: 19671281297
Ralambondrainy H,A conceptual version of the k-Means algorithmPattern Recogn LettYear: 1995161147115710.1016/0167-8655(95)00075-R
Bobrowski L,Bezdek JC,c-Means clustering with the l1 and l∞ normsIEEE Trans Syst Man CybernYear: 1989213545554
Salim SZ,Ismail MA,k-Means-type algorithms: A generalized convergence theorem and characterization of local optimalityIEEE Trans Pattern Anal Mach IntellYear: 19846818721869168
WorldFamilies.net http://www.worldfamilies.net.
Fitzpatrick C,Forensic genealogyYear: 2005Fountain Valley: Cal.: Rice Book Press
Ireland yDNA project http://www.familytreedna.com/public/IrelandHeritage/.
Finland DNA Project http://www.familytreedna.com/public/Finland/.
Y-Haplogroup project http://www.worldfamilies.net/yhapprojects/.
Clan Donald Genealogy Project http://dna-project.clan-donald-usa.org.
Flannery Clan http://www.flanneryclan.ie.
Doug and Joan Mumma’s Home Page http://www.mumma.org.
Williams Genealogy http://williams.genealogy.fm.
Phillips DNA Project. http://www.phillipsdnaproject.com.
Brown Genealogy Society http://brownsociety.org.
San OM,Huynh V,Nakamori Y,An alternative extension of the K-Means Algorithm for clustering categorical dataIJAMCSYear: 2004142241247
Blake CL,Merz CJ,UCI repository of machine learning databaseYear: 1989

Figures

[Figure ID: F1]
Figure 1 

Artificial Example 1. An example of higher degree of similarity between objects.



[Figure ID: F2]
Figure 2 

The dominant attributes form centroid 1 (a1, a2, c3), centroid 2 (a1, a2, c3) and centroid 3 (b1, c2, d3). In this case, there are possibilities that each cluster is formed by the dominant attributes, e.g. attribute a1, a2 and c3. This scenario of non-unique centroids would result in empty clusters; otherwise the centroids would lead to local a minima problem and produce poorer clustering results.



[Figure ID: F3]
Figure 3 

Artificial Example 2. An example of the extreme distribution of objects in a class.



[Figure ID: F4]
Figure 4 

The extreme distribution of objects A forms centroid 1 (a1, a2, a3) and centroid 2 (a1, a2, b3). In this case, the objects in Class A are equally distributed into clusters 1 and 2. Therefore, the obtained centroids are not sufficient to represent their classes.



[Figure ID: F5]
Figure 5 

Scalability Testing. a Execution time to cluster 65,000 data into different numbers of clusters. b Execution time to cluster a different number of data into three clusters.



Tables
[TableWrap ID: T1] Table 1 

Example of dominant objects


Objects
Membership Values
Probability of being the dominant object in the cluster
  c1 c2 c1 c2
x1
0.7
0.3
100% (1.0)
50% (0.5)
x2
0.4
0.6
50% (0.5)
100% (1.0)
x3
0.6
0.4
100% (1.0)
50% (0.5)
x4 0.3 0.7 50% (0.5) 100% (1.0)

[TableWrap ID: T2] Table 2 

Clustering accuracy scores for all datasets


ALGORITHM
DATASET
  1 2 3 4 5 6
k-Modes
0.70
0.79
0.84
0.84
0.74
0.62
k-Modes-RVF
0.79
0.83
0.87
0.78
0.87
0.72
k-Modes-UAVM
0.65
0.75
0.83
0.87
0.56
0.54
k-Modes-Hybrid 1
0.67
0.81
0.85
0.77
0.80
0.64
k-Modes-Hybrid 2
0.56
0.82
0.83
0.79
0.81
0.70
Fuzzy k-Modes
0.56
0.74
0.74
0.97
0.76
0.66
k-Population
0.80
0.90
0.97
1.00
0.97
0.84
New Fuzzy k-Modes
0.71
0.84
0.77
1.00
0.77
0.69
k-AMH 0.83 0.93 0.96 1.00 1.00 0.87

[TableWrap ID: T3] Table 3 

Clustering accuracy scores for all Y-STR datasets


 
N
Mean
Std. Dev.
95% Confidence Interval for Mean
Min
Max
        Lower Bound Upper Bound    
k-Mode
600
0.76
0.13
0.75
0.77
0.45
1.00
k-Mode-RVF
600
0.81
0.11
0.80
0.82
0.56
1.00
k-Mode-UAVM
600
0.70
0.17
0.69
0.71
0.38
1.00
k-Mode-Hybrid 1
600
0.76
0.13
0.75
0.77
0.38
1.00
k-Mode-Hybrid 2
600
0.75
0.14
0.74
0.76
0.45
1.00
Fuzzy k-Mode
600
0.74
0.16
0.73
0.75
0.32
1.00
k-Population
600
0.91
0.09
0.91
0.92
0.59
1.00
New Fuzzy k-Mode
600
0.80
0.13
0.79
0.81
0.44
1.00
k-AMH 600 0.93 0.07 0.93 0.94 0.79 1.00

[TableWrap ID: T4] Table 4 

Multiple comparisons for the k-AMH algorithm


Accuracy Games–Howell
(I) Algorithm
(J) Algorithm
Mean Diff. (I-J)
Std. Error
p-value
95% Confidence Interval
 
Lower Bound
Upper Bound
k-AMH
k-Mode
0.17*
0.01
< 0.00001
0.16
0.19
 
k-Mode-RVF
0.12*
0.01
< 0.00001
0.11
0.14
 
k-Mode-UAVM
0.23*
0.01
< 0.00001
0.21
0.25
 
k-Mode-Hybrid 1
0.17*
0.01
< 0.00001
0.16
0.19
 
k-Mode-Hybrid 2
0.18*
0.01
< 0.00001
0.16
0.20
 
Fuzzy k-Mode
0.19*
0.01
< 0.00001
0.17
0.21
 
k-Population
0.02*
0.00
0.00271
0.01
0.03
  New Fuzzy k-Modes 0.13* 0.01 < 0.00001 0.12 0.15

*Note: p < 0.05.



Article Categories:
  • Research Article

Keywords: Algorithms, Bioinformatics, Clustering, Optimization, Data mining.

Previous Document:  The 'real world' utility of a web-based bipolar disorder screening measure.
Next Document:  Peculiar fundus abnormalities and pathognomonic electrophysiological findings in a 14-month-old boy ...