Document Detail


The effect of exercise on mobilization of hematopoietic progenitor cells involved in the repair of sciatic nerve crush injury.
MedLine Citation:
PMID:  23176341     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Object Mobilization of hematopoietic progenitor cells (HPCs) from bone marrow involved in the process of peripheral nerve regeneration occurs mostly through deposits of CD34(+) cells. Treadmill exercise, with either differing intensity or duration, has been shown to increase axon regeneration and sprouting, but the effect of mobilization of HPCs on peripheral nerve regeneration due to treadmill exercise has not yet been elucidated. Methods Peripheral nerve injury was induced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The animals were categorized into 2 groups: those with and without treadmill exercise (20 m/min for 60 minutes per day for 7 days). Cytospin and flow cytometry were used to determine bone marrow progenitor cell density and distribution. Neurobehavioral analysis, electrophysiological study, and regeneration marker expression were investigated at 1 and 3 weeks after exercise. The accumulation of HPCs, immune cells, and angiogenesis factors in injured nerves was determined. A separate chimeric mice study was conducted to assess CD34(+) cell distribution according to treadmill exercise group. Results Treadmill exercise significantly promoted nerve regeneration. Increased Schwann cell proliferation, increased neurofilament expression, and decreased Schwann cell apoptosis were observed 7 days after treadmill exercise. Elevated expression of S100 and Luxol fast blue, as well as decreased numbers of vacuoles, were identified in the crushed nerve 3 weeks after treadmill exercise. Significantly increased numbers of mononuclear cells, particularly CD34(+) cells, were induced in bone marrow after treadmill exercise. The deposition of CD34(+) cells was abolished by bone marrow irradiation. In addition, deposits of CD34(+) cells in crushed nerves paralleled the elevated expressions of von Willebrand factor, isolectin B4, and vascular endothelial growth factor. Conclusions Bone marrow HPCs, especially CD34(+) cells, were able to be mobilized by low-intensity treadmill exercise, and this effect paralleled the significant expression of angiogenesis factors. Treadmill exercise stimulation of HPC mobilization during peripheral nerve regeneration could be used as a therapy in human beings.
Authors:
Fu-Chou Cheng; Meei-Ling Sheu; Hong-Lin Su; Ying-Ju Chen; Chun-Jung Chen; Wen-Ta Chiu; Jason Sheehan; Hung-Chuan Pan
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-23
Journal Detail:
Title:  Journal of neurosurgery     Volume:  -     ISSN:  1933-0693     ISO Abbreviation:  J. Neurosurg.     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0253357     Medline TA:  J Neurosurg     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Stem Cell Center.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Surgical treatment for vertebral artery-posterior inferior cerebellar artery aneurysms: special refe...
Next Document:  Peak power output provides the most reliable measure of performance in prolonged intermittent-sprint...