Document Detail

The effect of acute simulated moderate altitude on power, performance and pacing strategies in well-trained cyclists.
MedLine Citation:
PMID:  17882451     Owner:  NLM     Status:  MEDLINE    
Athletes regularly compete at 2,000-3,000 m altitude where peak oxygen consumption (VO2peak) declines approximately 10-20%. Factors other than VO2peak including gross efficiency (GE), power output, and pacing are all important for cycling performance. It is therefore imperative to understand how all these factors and not just VO2peak are affected by acute hypobaric hypoxia to select athletes who can compete successfully at these altitudes. Ten well-trained, non-altitude-acclimatised male cyclists and triathletes completed cycling tests at four simulated altitudes (200, 1,200, 2,200, 3,200 m) in a randomised, counter-balanced order. The exercise protocol comprised 5 x 5-min submaximal efforts (50, 100, 150, 200 and 250 W) to determine submaximal VO2 and GE and, after 10-min rest, a 5-min maximal time-trial (5-minTT) to determine VO2peak and mean power output (5-minTT(power)). VO2peak declined 8.2 +/- 2.0, 13.9 +/- 2.9 and 22.5 +/- 3.8% at 1,200, 2,200 and 3,200 m compared with 200 m, respectively, P < 0.05. The corresponding decreases in 5-minTT(power) were 5.8 +/- 2.9, 10.3 +/- 4.3 and 19.8 +/- 3.5% (P < 0.05). GE during the 5-minTT was not different across the four altitudes. There was no change in submaximal VO2 at any of the simulated altitudes, however, submaximal efficiency decreased at 3,200 m compared with both 200 and 1,200 m. Despite substantially reduced power at simulated altitude, there was no difference in pacing at the four altitudes for athletes whose first trial was at 200 or 1,200 m; whereas athletes whose first trial was at 2,200 or 3,200 m tended to mis-pace that effort. In conclusion, during the 5-minTT there was a dose-response effect of hypoxia on both VO2peak and 5-minTT(power) but no effect on GE.
Sally A Clark; P C Bourdon; W Schmidt; B Singh; G Cable; K J Onus; S M Woolford; T Stanef; C J Gore; R J Aughey
Publication Detail:
Type:  Journal Article     Date:  2007-09-20
Journal Detail:
Title:  European journal of applied physiology     Volume:  102     ISSN:  1439-6327     ISO Abbreviation:  Eur. J. Appl. Physiol.     Publication Date:  2007 Dec 
Date Detail:
Created Date:  2007-11-07     Completed Date:  2009-02-27     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100954790     Medline TA:  Eur J Appl Physiol     Country:  Germany    
Other Details:
Languages:  eng     Pagination:  45-55     Citation Subset:  IM    
Department of Physiology, Australian Institute of Sport, Canberra, ACT, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Acclimatization / physiology*
Bicycling / physiology*
Energy Transfer / physiology*
Oxygen Consumption / physiology*
Physical Exertion / physiology*
Physical Fitness / physiology*
Task Performance and Analysis*

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport sy...
Next Document:  The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: ...