Document Detail

The chromatographic separation of particles using optical electric fields.
MedLine Citation:
PMID:  23325461     Owner:  NLM     Status:  Publisher    
We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parallel array of axially non-uniform optical fields yielding an attractive potential (positive-DEP-FFF) is advantageous for the separation of polymers, biomolecules, and nanoparticles over very short distances. Furthermore, positive-DEP-FFF yields superior selectivity and resolution compared to conventional separation techniques, which do not lend themselves to miniaturization. A wide range of parameters are considered and the results are presented considering traditional chromatography parameters: the retention ratio and resolution. A simple analytical model is introduced which captures the trends for small normalized decay lengths and will be useful in the design of experimental separation platforms.
Nicolas Javier Alvarez; Claus Jeppesen; Kresten Yvind; N Asger Mortensen; Ole Hassager
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-17
Journal Detail:
Title:  Lab on a chip     Volume:  -     ISSN:  1473-0189     ISO Abbreviation:  Lab Chip     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-17     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101128948     Medline TA:  Lab Chip     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kogens Lyngby, Denmark.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal...
Next Document:  The practicalities and pitfalls of establishing a policy-relevant and cost-effective soil biological...