Document Detail


A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex.
MedLine Citation:
PMID:  22575832     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum.
Authors:
Cédryck Vaquette; Wei Fan; Yin Xiao; Stephen Hamlet; Dietmar W Hutmacher; Saso Ivanovski
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-5-8
Journal Detail:
Title:  Biomaterials     Volume:  -     ISSN:  1878-5905     ISO Abbreviation:  -     Publication Date:  2012 May 
Date Detail:
Created Date:  2012-5-11     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8100316     Medline TA:  Biomaterials     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier Ltd. All rights reserved.
Affiliation:
Institute of Health and Biomedical Innovation, Queensland University of Technology, 60, Musk Avenue, Kelvin Grove, QLD 4059, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Long-circulating perfluorooctyl bromide nanocapsules for tumor imaging by (19)FMRI.
Next Document:  Fretting corrosion of CoCrMo and Ti6Al4V interfaces.