Document Detail

An automatic device for detection and classification of malaria parasite species in thick blood film.
MedLine Citation:
PMID:  23281600     Owner:  NLM     Status:  MEDLINE    
BACKGROUND: Current malaria diagnosis relies primarily on microscopic examination of Giemsa-stained thick and thin blood films. This method requires vigorously trained technicians to efficiently detect and classify the malaria parasite species such as Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) for an appropriate drug administration. However, accurate classification of parasite species is difficult to achieve because of inherent technical limitations and human inconsistency. To improve performance of malaria parasite classification, many researchers have proposed automated malaria detection devices using digital image analysis. These image processing tools, however, focus on detection of parasites on thin blood films, which may not detect the existence of parasites due to the parasite scarcity on the thin blood film. The problem is aggravated with low parasitemia condition. Automated detection and classification of parasites on thick blood films, which contain more numbers of parasite per detection area, would address the previous limitation.
RESULTS: The prototype of an automatic malaria parasite identification system is equipped with mountable motorized units for controlling the movements of objective lens and microscope stage. This unit was tested for its precision to move objective lens (vertical movement, z-axis) and microscope stage (in x- and y-horizontal movements). The average precision of x-, y- and z-axes movements were 71.481 ± 7.266 μm, 40.009 ± 0.000 μm, and 7.540 ± 0.889 nm, respectively. Classification of parasites on 60 Giemsa-stained thick blood films (40 blood films containing infected red blood cells and 20 control blood films of normal red blood cells) was tested using the image analysis module. By comparing our results with the ones verified by trained malaria microscopists, the prototype detected parasite-positive and parasite-negative blood films at the rate of 95% and 68.5% accuracy, respectively. For classification performance, the thick blood films with Pv parasite was correctly classified with the success rate of 75% while the accuracy of Pf classification was 90%.
CONCLUSIONS: This work presents an automatic device for both detection and classification of malaria parasite species on thick blood film. The system is based on digital image analysis and featured with motorized stage units, designed to easily be mounted on most conventional light microscopes used in the endemic areas. The constructed motorized module could control the movements of objective lens and microscope stage at high precision for effective acquisition of quality images for analysis. The analysis program could accurately classify parasite species, into Pf or Pv, based on distribution of chromatin size.
Saowaluck Kaewkamnerd; Chairat Uthaipibull; Apichart Intarapanich; Montri Pannarut; Sastra Chaotheing; Sissades Tongsima
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-12-13
Journal Detail:
Title:  BMC bioinformatics     Volume:  13 Suppl 17     ISSN:  1471-2105     ISO Abbreviation:  BMC Bioinformatics     Publication Date:  2012  
Date Detail:
Created Date:  2013-01-03     Completed Date:  2013-05-15     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  100965194     Medline TA:  BMC Bioinformatics     Country:  England    
Other Details:
Languages:  eng     Pagination:  S18     Citation Subset:  IM    
National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Chromatin / ultrastructure
Erythrocytes / parasitology*
Image Processing, Computer-Assisted / methods*
Malaria / blood,  diagnosis*,  parasitology
Malaria, Falciparum / blood,  diagnosis,  parasitology
Microscopy / methods*
Parasitemia / blood,  parasitology
Plasmodium / classification*,  isolation & purification*
Plasmodium falciparum / classification,  isolation & purification
Plasmodium vivax / classification,  isolation & purification
Reg. No./Substance:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Preferential regulation of stably expressed genes in the human genome suggests a widespread expressi...
Next Document:  snpTree--a web-server to identify and construct SNP trees from whole genome sequence data.