Document Detail

Work at high altitude and oxidative stress: antioxidant nutrients.
MedLine Citation:
PMID:  12324188     Owner:  NLM     Status:  MEDLINE    
A significant portion of the world's geography lies above 10,000 feet elevation, an arbitrary designation that separates moderate and high altitude. Although the number of indigenous people living at these elevations is relatively small, many people travel to high altitude for work or recreation, exposing themselves to chronic or intermittent hypoxia and the associated risk of acute mountain sickness (AMS) and less frequently, high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The symptoms of AMS (headache, nausea, anorexia, fatigue, lassitude) occur in those who travel too high, too fast. Some investigators have linked the development of these symptoms with the condition of altered blood-brain barrier permeability, possibly related to hypoxia induced free radical formation. The burden of oxidative stress increases during the time spent at altitude and may even persist for some time upon return to sea level. The physiological and medical consequences of increased oxidative stress engendered by altitude is unclear; indeed, hypoxia is believed to be the trigger for the cascade of signaling events that ultimately leads to adaptation to altitude. These signaling events include the generation of reactive oxygen species (ROS) that may elicit important adaptive responses. If produced in excess, however, these ROS may contribute to impaired muscle function and reduced capillary perfusion at altitude or may even play a role in precipitating more serious neurological and pulmonary crisis. Oxidative stress can be observed at altitude without strenuous physical exertion; however, environmental factors other than hypoxia, such as exercise, UV light exposure and cold exposure, can also contribute to the burden. Providing antioxidant nutrients via the diet or supplements to the diet can reduce oxidative stress secondary to altitude exposure. In summary, the significant unanswered question concerning altitude exposure and antioxidant supplementation is when does oxidative stress become potentially damaging enough to merit antioxidant therapy and conversely, what degree of oxidative stress is necessary to foster the adaptive response of altitude exposure?
E W Askew
Related Documents :
11716128 - Association of splenomegaly with cerebral malaria and decreased concentrations of react...
8969628 - Reticulocyte quantification by coulter maxm vcs (volume, conductivity, light scatter) t...
1656928 - Plasma changes in beta-endorphin to acute hypobaric hypoxia and high intensity exercise.
2651278 - The carabelli trait in human prehistoric populations of the canary islands.
7004128 - Late results of surgical treatment of transposition of the great arteries.
19565548 - Effect of baseline quadriceps activation on changes in quadriceps strength after exerci...
Publication Detail:
Type:  Journal Article; Review    
Journal Detail:
Title:  Toxicology     Volume:  180     ISSN:  0300-483X     ISO Abbreviation:  Toxicology     Publication Date:  2002 Nov 
Date Detail:
Created Date:  2002-09-26     Completed Date:  2002-11-14     Revised Date:  2005-11-16    
Medline Journal Info:
Nlm Unique ID:  0361055     Medline TA:  Toxicology     Country:  Ireland    
Other Details:
Languages:  eng     Pagination:  107-19     Citation Subset:  IM    
Division of Foods and Nutrition, University of Utah, 250 South 1850 East Room 239 N-HPR, Salt Lake City, UT 84112, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Adaptation, Physiological / physiology
Altitude Sickness / diet therapy,  metabolism,  physiopathology*
Anoxia / physiopathology
Atmospheric Pressure
Exercise / physiology
Free Radicals / metabolism
Oxidative Stress / physiology*
Reactive Oxygen Species / metabolism
Work / physiology*
Reg. No./Substance:
0/Antioxidants; 0/Free Radicals; 0/Reactive Oxygen Species

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Red blood cell and plasma phospholipid arachidonic and docosahexaenoic acid levels at birth and cogn...
Next Document:  The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients.