Document Detail


Within-lifetime trade-offs but evolutionary freedom for hormonal and immunological traits: evidence from mice bred for high voluntary exercise.
MedLine Citation:
PMID:  22539732     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Chronic increases in circulating corticosterone (CORT) generally suppress immune function, but it is not known whether evolved increases necessarily have similar adverse effects. Moreover, the evolution of immune function might be constrained by the sharing of signaling molecules, such as CORT, across numerous physiological systems. Laboratory house mice (Mus domesticus Linnaeus) from four replicate lines selectively bred for high voluntary wheel running (HR lines) generally had baseline circulating CORT approximately twofold higher than in four non-selected control (C) lines. To test whether elevated baseline CORT suppresses the inflammatory response in HR mice, we injected females with lipopolysaccharide (LPS). All mice injected with LPS exhibited classic signs of an inflammatory response, including sickness behavior, loss of body mass, reduced locomotor activity (i.e. voluntary wheel running), enlarged spleens and livers, elevated hematocrit and elevated inflammatory cytokines. However, as compared with C mice, the inflammatory response was not suppressed in HR mice. Our results, and those of a previous study, suggest that selective breeding for high voluntary exercise has not altered immune function. They also suggest that the effects of evolved differences in baseline CORT levels may differ greatly from effects of environmental factors (often viewed as 'stressors') that alter baseline CORT during an individual's lifetime. In particular, evolved increases in circulating levels of 'stress hormones' are not necessarily associated with detrimental suppression of the inflammatory response, presumably as a result of correlated evolution of other physiological systems (counter-measures). Our results have important implications for the interpretation of elevated stress hormones and of immune indicators in natural populations.
Authors:
Cynthia J Downs; Heidi Schutz; Thomas H Meek; Elizabeth M Dlugosz; Wendy Acosta; Karen S de Wolski; Jessica L Malisch; Jack P Hayes; Theodore Garland
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  The Journal of experimental biology     Volume:  215     ISSN:  1477-9145     ISO Abbreviation:  J. Exp. Biol.     Publication Date:  2012 May 
Date Detail:
Created Date:  2012-04-27     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0243705     Medline TA:  J Exp Biol     Country:  England    
Other Details:
Languages:  eng     Pagination:  1651-61     Citation Subset:  IM    
Affiliation:
Program in Ecology, Evolution, and Conservation Biology and Department of Biology, University of Nevada, Reno, NV 89557, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  The determination of nest depth in founding queens of leaf-cutting ants (Atta vollenweideri): idioth...
Next Document:  Small organ size contributes to the slow pace of life in tropical birds.