Document Detail


Wavefield extraction using multi-channel chirplet decomposition.
MedLine Citation:
PMID:  20369981     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
In acoustical and seismic fields, wavefield extraction has always been a crucial issue to solve inverse problem. Depending on the experimental configuration, conventional methods of wavefield decomposition might no longer likely to hold. In this paper, an original approach is proposed based on a multichannel decomposition of the signal into a weighted sum of elementary functions known as chirplets. Each chirplet is described by physical parameters and the collection of chirplets makes up a large adaptable dictionary, so that a chirplet corresponds unambiguously to one wave component.
Authors:
Grégoire Le Touzé; Paul Cristini; Nathalie Favretto-Cristini; Jacques Blanco
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  The Journal of the Acoustical Society of America     Volume:  127     ISSN:  1520-8524     ISO Abbreviation:  J. Acoust. Soc. Am.     Publication Date:  2010 Apr 
Date Detail:
Created Date:  2010-04-07     Completed Date:  2010-07-06     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7503051     Medline TA:  J Acoust Soc Am     Country:  United States    
Other Details:
Languages:  eng     Pagination:  EL140-5     Citation Subset:  IM    
Affiliation:
Laboratoire de Mecanique et d'Acoustique-CNRS, 31 chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France. le_touze@lma.cnrs-mrs.fr
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Acoustics*
Algorithms*
Computer Simulation
Earthquakes
Geology*
Models, Theoretical*
Signal Processing, Computer-Assisted*
Sound*
Sound Spectrography

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  A new adaptive resonance frequency of piezoelectric components used for vibration damping.
Next Document:  Identification of synthetic vowels based on a time-varying model of the vocal tract area function.