Document Detail

Vitamin D and responses to inhaled fluticasone in severe chronic obstructive pulmonary disease.
Jump to Full Text
MedLine Citation:
PMID:  21311691     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) demonstrate variable responses to inhaled corticosteroids (ICS). The factors contributing to this variability are not well understood. Data from patients with asthma have suggested that low 25-hydroxyvitamin D [25(OH)D] levels contribute to a lack of ICS response in asthma. The objective of this study was to determine whether serum levels of 25(OH)D were related to ICS responses in patients with COPD.
METHODS: A total of 60 exsmokers with severe COPD (mean forced expiratory volume in one second [FEV(1)] 1.07 L, 36% of predicted) spent 4 weeks free of any ICS, followed by 4 weeks of ICS use (fluticasone propionate 500 μg twice daily). Spirometry was performed prior to and after 4 weeks of ICS use. Blood 25(OH)D levels were measured prior to ICS use and examined for relationships to changes in FEV(1) following the 4 weeks of ICS use.
RESULTS: The mean 25(OH)D level was 23.3 ± 9.3 ng/mL. There was a high prevalence of vitamin D insufficiency (35%) and deficiency (40%). There was no relationship between baseline 25(OH)D and changes in FEV(1) following 4 weeks of ICS.
CONCLUSION: Baseline 25(OH)D does not contribute to the variation in short-term FEV(1) responses to ICS in patients with severe COPD.
Authors:
Ken M Kunisaki; Thomas S Rector
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.     Date:  2011-01-07
Journal Detail:
Title:  International journal of chronic obstructive pulmonary disease     Volume:  6     ISSN:  1178-2005     ISO Abbreviation:  Int J Chron Obstruct Pulmon Dis     Publication Date:  2011  
Date Detail:
Created Date:  2011-02-11     Completed Date:  2011-06-07     Revised Date:  2013-06-30    
Medline Journal Info:
Nlm Unique ID:  101273481     Medline TA:  Int J Chron Obstruct Pulmon Dis     Country:  New Zealand    
Other Details:
Languages:  eng     Pagination:  29-34     Citation Subset:  IM    
Affiliation:
Pulmonary Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN 55417, USA. kunis001@umn.edu
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Administration, Inhalation
Aged
Androstadienes / administration & dosage*
Bronchodilator Agents / administration & dosage*
Female
Forced Expiratory Volume
Humans
Lung / drug effects*,  physiopathology
Male
Middle Aged
Minnesota
Pulmonary Disease, Chronic Obstructive / blood,  drug therapy*,  physiopathology
Severity of Illness Index
Spirometry
Time Factors
Treatment Outcome
Vitamin D / analogs & derivatives*,  blood
Vitamin D Deficiency / blood*
Grant Support
ID/Acronym/Agency:
T32 HL07741/HL/NHLBI NIH HHS; UL1 RR024150/RR/NCRR NIH HHS
Chemical
Reg. No./Substance:
0/Androstadienes; 0/Bronchodilator Agents; 1406-16-2/Vitamin D; 64719-49-9/25-hydroxyvitamin D; CUT2W21N7U/fluticasone
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Int J Chron Obstruct Pulmon Dis
Journal ID (publisher-id): International Journal of COPD
ISSN: 1176-9106
ISSN: 1178-2005
Publisher: Dove Medical Press
Article Information
Download PDF
© 2011 Kunisaki and Rector, publisher and licensee Dove Medical Press Ltd.
License:
collection publication date: Year: 2011
Print publication date: Year: 2011
Electronic publication date: Day: 07 Month: 1 Year: 2011
Volume: 6First Page: 29 Last Page: 34
ID: 3034285
PubMed Id: 21311691
DOI: 10.2147/COPD.S15358
Publisher Id: copd-6-029

Vitamin D and responses to inhaled fluticasone in severe chronic obstructive pulmonary disease
Ken M Kunisaki13
Thomas S Rector24
1 Pulmonary Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, USA
2 Center for Chronic Disease Outcomes Research and Center for Epidemiologic and Clinical Research, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, USA
3 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
4 Department of Medicine, University of Minnesota, Minneapolis, MN, USA
Correspondence: Correspondence: Ken M Kunisaki, Minneapolis VA Medical Center, Pulmonary Section (111N), One Veterans Drive, Minneapolis, MN, 55417, USA, Tel + 1 612 467 4400, Fax + 1 612 727 5634, Email kunis001@umn.edu

Introduction

Vitamin D has received increasing amounts of attention in recent years, particularly its potential nonskeletal effects in diseases such as cancer, cardiovascular disease, and infectious diseases. Although an optimal level of vitamin D has not been defined for nonskeletal outcomes, 25-hydroxyvitamin D [25(OH)D] levels < 20 ng/mL are widely considered to reflect deficiency. Using this definition, patients with chronic obstructive pulmonary disease (COPD) have a high prevalence of vitamin D deficiency, ranging from approximately 30% in mild COPD to over 75% in severe COPD.15 The clinical consequences of these low 25(OH)D levels in COPD patients have not been studied extensively. Among patients with asthma, low 25(OH)D levels have been associated with an increased risk of severe asthma exacerbations,6 hospitalizations,7 poor asthma control,8 and steroid resistance.9 We pursued the current study to investigate relationships between 25(OH)D and responses to inhaled corticosteroid (ICS) treatment in patients with COPD.

ICS are widely used in the treatment of COPD. However, the clinical response to ICS is variable, and some patients respond more favorably than others. The underlying causes of this variable response are not well understood. Recent data from patients with asthma suggest that low blood 25(OH)D levels might contribute to poor glucocorticoid responses.10,11 We therefore examined the hypothesis that among patients with COPD, 25(OH)D levels were associated with the variation in responsiveness to ICS treatment.


Methods

This study was conducted using stored serum from a previous study designed to examine the ability of exhaled nitric oxide and blood markers of systemic inflammation to predict forced expiratory volume in one second (FEV1) responses to ICS treatment in patients with COPD. Results have been previously published.12

Subjects

The institutional review board of the Minneapolis Veterans Affairs Medical Center approved the original study and this secondary analysis. All subjects provided written informed consent for the original study and for storage of blood samples for future research. The study did not meet trial registration criteria at the time of its conduct between 2005 and 2006.

Subjects were recruited from the Minneapolis Veterans Affairs Medical Center between May 2005 and February 2006. Inclusion criteria were: 1) a clinical diagnosis of COPD, with a FEV1/forced vital capacity (FVC) ratio < 70%, and FEV1 < 60% of predicted; 2) age >45 years; 3) cigarette smoking history of >10 pack-years; 4) abstinence from cigarette smoking of at least 6 months; 5) stable clinical status, as evidenced by the lack of hospitalizations, urgent care visits, antibiotics, or changes in medications within 4 weeks prior to enrollment; and 6) ability to provide informed consent. Exclusion criteria were: 1) a clinical diagnosis of asthma; 2) leukotriene inhibitor use; 3) severe or uncompensated heart failure; 4) the presence of conditions known to elevate C-reactive protein (CRP) levels such as collagen vascular disease and chronic infection; 5) malignancy requiring active treatment with chemotherapy or radiation therapy, or any comorbidity making survival longer than 1 year unlikely; 6) women who were pregnant or lactating; 7) oral corticosteroid use within 4 weeks prior to enrollment; and 8) participation in another investigational trial within 4 weeks of enrollment and for the 8-week duration of this study.

Study design

Subjects who met study criteria and agreed to participate entered a 4-week run-in period. During the run-in, subjects were treated with salmeterol, 50 μg inhalation twice daily (Serevent Diskus®; GlaxoSmithKline, Research Triangle Park, NC). The use of ICSs was not allowed during the run-in. Tiotropium use was not allowed for the duration of the study; however, tiotropium was not in wide use at the time of this study. Subjects were allowed to continue use of all other respiratory medications, including short-acting beta agonists and ipratropium.

After the run-in, subjects returned to the study center for baseline measurements of prebronchodilator spirometry and blood collection. All visits were in the morning and subjects were fasting. Before each study visit, subjects withheld use of short-acting bronchodilators for 6 hours and with-held use of salmeterol for 12 hours. For the next 4 weeks, subjects were treated twice daily with 500 μg of fluticasone propionate and 50 μg of salmeterol (Advair Diskus 500/50®; GlaxoSmithKline). After 4 weeks, subjects returned to the study center for repeat measurement of prebronchodilator spirometry and blood sample collection.

Protocols

Spirometry was performed in accordance with American Thoracic Society (ATS) standards13 (MicroLab 3500, Micro-Medical, Kent, UK). Third National Health and Nutrition Examination Survey spirometric reference values were used as reference.14

Serum blood samples were allowed to clot at room temperature, centrifuged, and immediately frozen at −80° C in aliquots. Stored serum for 25(OH)D assay was available for all patients who completed the original study. For this study, 25(OH)D levels were measured from stored samples collected at the visit following the run-in (“baseline”), prior to ICS initiation. 25(OH)D was measured by liquid chromatography tandem mass spectroscopy (ThermoFisher Scientific, Franklin, MA; Applied Biosystems-MDS Sciex, Foster City, CA) at the Mayo Clinic Immunochemical Core Laboratory (Rochester, MN).

Statistical methods

The primary outcomes of interest in the original study were correlations between potential predictor variables (exhaled breath and blood inflammatory markers) and the outcome variable: prebronchodilator change in FEV1 from baseline to after 4 weeks of ICS therapy. The study was powered (two-sided alpha of 0.05 and beta of 0.20) to detect a correlation coefficient of 0.35. This resulted in a sample size calculation of 62 patients. Seventy-eight subjects consented, which allowed for 20% of consented subjects to either fail spirometry screening or not complete the full protocol. This secondary analysis of 25(OH)D levels as a predictor variable of ICS response was not planned at the time of the original study.

Because ICS responses were not normally distributed, analyses were conducted with nonparametric statistical tests. For the primary correlation analyses, Spearman’s rank-correlation testing (reported as Spearman’s rho) was used. For secondary analyses, we dichotomized subjects into responders and nonresponders to ICS therapy, using a FEV1 improvement of ≥ 200 mL after 4 weeks of ICS therapy to define responders. There is no consensus on a meaningful FEV1 response to ICS therapy in COPD. We thus extrapolated from ATS guidelines which require ≥ 200 mL improvement in FEV1 as a component of defining a significant bronchodilator response.13

Distributions of 25(OH)D among responders and non-responders were compared using the Wilcoxon rank-sum test. Receiver-operating characteristic (ROC) analyses were also conducted, using FEV1 improvement of ≥ 200 mL after 4 weeks of ICS therapy as the outcome of interest. We also dichotomized subjects using conventional 25(OH)D cut points for vitamin D deficiency (< 20 ng/mL) and insufficiency (< 30 ng/mL) and compared distributions of FEV1 change using the Wilcoxon rank-sum test.

All statistical analyses were performed using Stata software (v. 9; StataCorp LP, College Station, TX).


Results

A total of 76 patients consented to study participation, and 16 (21%) did not complete the full protocol. Three failed to meet screening spirometry criteria, seven experienced COPD exacerbations during the study, and six withdrew consent during the study, chiefly for subjective dyspnea. Therefore, 60 patients provided complete data for analysis. Compared to participants who completed the study, participants who withdrew from the study had similar COPD severity, but were more likely to have been prescribed antibiotics and prednisone in the previous 12 months, and were more likely to have received more inhaled medications, including inhaled corticosteroids, before study participation (Table 1).

The mean age was 71 years (98% males), with a mean FEV1 of 1.07 L ± 0.36 L (36% of predicted). ICS compliance was excellent (93% of expected doses used) as assessed by device dose delivery counters. FEV1 change after ICS treatment ranged from −0.49 to 0.64 L (median change of 0.07 L; interquartile range, −0.02–0.14 L). Mean 25(OH)D level was 23.3 ± 9.3 ng/mL. There was no correlation between baseline 25(OH)D levels and baseline FEV1 ( Spearman rho = −0.10; P = 0.46) ( Figure 1). There was a high prevalence of vitamin D deficiency (n = 24; 40%) when using the standard definition of deficiency being a 25(OH)D level < 20 ng/mL. Vitamin D insufficiency, defined as a 25(OH)D level ≥ 20 ng/mL but < 30 ng/mL, was also prevalent (n = 21, 35%). Only 25% of study participants had a 25(OH)D level considered normal.

There was no correlation between baseline 25(OH)D and subsequent FEV1 responses to ICS (Spearman rho = 0.01; P = 0.93) (Figure 2). When ICS responders were defined as experiencing ≥ 200 mL improvement in prebronchodilator FEV1 between baseline and after ICS therapy, the median baseline 25(OH)D of ICS responders (n = 11) and nonresponders (n = 49) was equal (23 ng/mL and 23 ng/mL, respectively; Wilcoxon rank-sum, P = 0.97) (Figure 3). ROC analysis showed that 25(OH)D had no ability to discriminate ICS responders from nonresponders (ROC area under curve = 0.50; 95% confidence interval: 0.31–0.68). When patients were dichotomized as vitamin D deficient (25[OH]D < 20 ng/mL) or not deficient, there was no difference in the median FEV1 improvement with ICS in each group (75 mL and 50 mL, respectively; Wilcoxon rank-sum, P = 0.64) (Figure 4). Results did not change when the 25(OH) D cutoff was changed to < 30 ng/mL to compare those with vitamin D insufficiency or deficiency to those with normal vitamin D levels (median FEV1 improvement of 80 mL and 50 mL, respectively; Wilcoxon rank-sum, P = 0.78).


Discussion

This study utilized stored samples from a previous study examining predictors of ICS responses in patients with COPD. In the original study, exhaled nitric oxide was shown to have a modest relationship to ICS responses. In this secondary analysis of stored samples from that study, baseline 25(OH)D had no relationship to FEV1 changes after 4 weeks of ICS use.

This secondary analysis was largely prompted by Sutherland and colleagues’ findings.10 In their sample of 54 adults with asthma, low 25(OH)D levels were associated with blunted corticosteroid responses. However, corticosteroid responses in their study were assessed by an in-vitro assay of dexamethasone-induced mitogen-activated protein kinase phosphatase (MKP)-1 expression by peripheral blood mono-nuclear cells (PBMCs), rather than spirometry. As such, the clinical extension of their in vitro finding remains to be validated. In a related study of 100 children with asthma, Searing and colleagues reported similar in vitro effects of vitamin D on dexamethasone-induced MKP-1 expression by PBMCs.11 Relationships between vitamin D and steroid responses may be different in asthma and COPD, but there are currently no published reports regarding this topic among patients with COPD.

This is the first study to analyze 25(OH)D levels in relation to ICS responses in COPD. This study has several limitations. The study sample was essentially limited to elderly Caucasian males and was a single-center study. Our study was also relatively small in size, but all of our point estimates for differences clustered around the null hypothesis of no difference. As such, a larger sample size would not likely alter the conclusions. In addition, FEV1 responses were only assessed over a relatively brief 4-week ICS intervention; longer-term outcome data were not collected. The rationale for this brief intervention was that the majority of ICS effects on FEV1 have occurred within 2–4 weeks in previous large COPD clinical trials.1517

The need for an ICS wash-out period may have also affected our results. Patients with previous good clinical responses to ICS therapy may have been either less likely to enroll in this study or more likely to withdraw during the study, as was suggested by the higher percent of previous ICS users in the group that did not complete the study. Thus, our sample may have been biased towards ICS nonresponders. A 4-week period for ICS wash-out could also limit ICS responses following re-introduction of ICS therapy. A study of ICS-naive patients would have eliminated the need for a wash-out, but such a study was felt to be unfeasible for a single-center study, due to a high rate of use of ICS in patients with COPD (nearly 50% in our recruited sample).

Another limitation of our study is that nonspirometric outcomes were not assessed, so an analysis of 25(OH)D relationships to outcomes such as acute exacerbations or respiratory health status could not be performed. Compared with patients without COPD, patients with COPD are also at increased risk of diseases such as cardiovascular disease, osteoporosis, and skeletal muscle dysfunction, which are all diseases which have been associated with low 25(OH)D levels.18 As such, these are areas that require further investigation.

Our data confirm previous observations regarding a high prevalence of what is traditionally considered a suboptimal 25(OH)D level of < 30 ng/mL. We were not able to explain the reasons for low 25(OH)D levels, as we did not collect information on common factors affecting vitamin D status, such as dietary supplement use, sunlight exposure, and skin pigmentation. We also note that while we found a high prevalence of 25(OH)D levels < 30 ng/mL in our sample of patients with COPD, general population samples have also demonstrated a high prevalence of low 25(OH)D levels. Among 13,369 US participants in the National Health and Nutrition Examination Survey (NHANES) between 2001–2004, 77% had levels < 30 ng/mL.19

In summary, there was a high prevalence of low blood 25(OH)D levels in a sample of patients with severe COPD, and these 25(OH)D levels were not associated with short- term FEV1 responses to ICS therapy.


Notes

Disclosure

This study was supported by the Minnesota Veterans Research Institute (Investigator Grant to Dr Kunisaki) and National Institutes of Health (T32 HL07741 to Dr Kunisaki and UL1 RR024150 to Mayo Clinic).

References
1. Riancho JA,Gonzalez Macias J,Del Arco C,et al. Vertebral compression fractures and mineral metabolism in chronic obstructive lung diseaseThoraxYear: 1987429629663438885
2. Shane E,Silverberg SJ,Donovan D,et al. Osteoporosis in lung transplantation candidates with end-stage pulmonary diseaseAm J MedYear: 19961012622698873487
3. Forli L,Halse J,Haug E,et al. Vitamin D deficiency, bone mineral density and weight in patients with advanced pulmonary diseaseJ Intern MedYear: 2004256566215189366
4. Janssens W,Bouillon R,Claes B,et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding geneThoraxYear: 20106521522019996341
5. Kunisaki KM,Niewoehner DE,Singh RJ,et al. Vitamin D status and longitudinal lung function decline in the Lung Health StudyEur Respir JYear: 2010Month: 7 Day: 1 [Epub ahead of print].
6. Brehm JM,Schuemann B,Fuhlbrigge AL,et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program studyJ Allergy Clin ImmunolYear: 20101265258e520538327
7. Brehm JM,Celedon JC,Soto-Quiros ME,et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa RicaAm J Respir Crit Care MedYear: 200917976577119179486
8. Chinellato I,Piazza M,Sandri M,et al. Vitamin D serum levels and markers of asthma control in Italian childrenJ PediatrYear: 2010Month: 9 Day: 25 [Epub ahead of print].
9. Xystrakis E,Kusumakar S,Boswell S,et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patientsJ Clin InvestYear: 200611614615516341266
10. Sutherland ER,Goleva E,Jackson LP,et al. Vitamin D levels, lung function, and steroid response in adult asthmaAm J Respir Crit Care MedYear: 201018169970420075384
11. Searing DA,Zhang Y,Murphy JR,et al. Decreased serum vitamin D levels in children with asthma are associated with increased corticosteroid useJ Allergy Clin ImmunolYear: 2010125995100020381849
12. Kunisaki KM,Rice KL,Janoff EN,et al. Exhaled nitric oxide, systemic inflammation, and the spirometric response to inhaled fluticasone propionate in severe chronic obstructive pulmonary disease: a prospective studyTher Adv Respir DisYear: 20082556419124359
13. Standardization of Spirometry, 1994 UpdateAmerican Thoracic SocietyAm J Respir Crit Care MedYear: 19955211071136
14. Hankinson JL,Odencrantz JR,Fedan KB. Spirometric reference values from a sample of the general US populationAm J Respir Crit Care MedYear: 19991591791879872837
15. Calverley P,Pauwels R,Vestbo J,et al. Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trialLancetYear: 200336144945612583942
16. Szafranski W,Cukier A,Ramirez A,et al. Efficacy and safety of budesonide/ formoterol in the management of chronic obstructive pulmonary diseaseEur Respir JYear: 200321748112570112
17. Aaron SD,Vandemheen KL,Fergusson D,et al. Tiotropium in combination with placebo, salmeterol, or fluticasone salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trialAnn Intern MedYear: 200714654555517310045
18. Holick MF. Vitamin D deficiencyN Engl J MedYear: 200735726628117634462
19. Ginde AA,Liu MC,Camargo CA Jr. Demographic differences and trends of vitamin D insufficiency in the US population, 1988–2004Arch Intern MedYear: 200916962663219307527

Article Categories:
  • Short Report

Keywords: COPD, androstadienes, anti-inflammatory agents, spirometry.

Previous Document:  Fractal correlation property of heart rate variability in chronic obstructive pulmonary disease.
Next Document:  Changing patterns in long-acting bronchodilator trials in chronic obstructive pulmonary disease.