Document Detail

Variations in salinity tolerance of malaria vectors of the Anopheles subpictus complex in Sri Lanka and the implications for malaria transmission.
Jump to Full Text
MedLine Citation:
PMID:  21702917     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Anopheles subpictus sensu lato, a widespread vector of malaria in Asia, is reportedly composed of four sibling species A-D based on distinct cytogenetic and morphological characteristics. However An. subpictus species B specimens in Sri Lanka are termed An. subpictus B/ An. sundaicus because of recent genetic data. Differences in salinity tolerance and coastal/inland prevalence of An. subpictus sibling species that were not previously established in Sri Lanka are presented here.
RESULTS: Specimens with morphological characteristics of all four Indian An. subpictus sibling species were found in Sri Lanka. Sibling species A, C and D tended to be predominant in inland, and An. subpictus species B/An. sundaicus, in coastal localities. Sibling species C was predominant in both adult and larval inland collections. Larvae of An. subpictus B/An. sundaicus were found in inland and coastal sites, including a lagoon, with salinity varying from 0 to 30 ppt. An. subpictus sibling species A, C and D larvae were present in water of salinity between 0 to 4 ppt. An. subpictus C, D and An. subpictus B/An. sundaicus larvae showed compatible differential salinity tolerance in laboratory tests. The first instar larvae of An. subpictus B/An. sundaicus showed 100% survival up to 15 ppt in comparison to species C and D where the corresponding values were 3 ppt and 6 ppt respectively. However all third instar larvae of An. subpictus B/An. sundaicus survived up to 30 ppt salinity whereas An. subpictus C and D tolerated up to 4 ppt and 8 ppt salinity respectively.
CONCLUSIONS: The results suggest that An. subpictus species B/An. sundaicus breed in fresh, brackish and nearly saline water while An. subpictus species C and D do so in fresh and less brackish waters in Sri Lanka, as in India. Because of the established role of An. sundaicus s.l. and An. subpictus s.l. as malaria vectors, the findings indicate a need for greater monitoring of brackish water breeding habitats in Asia. Tolerance to 15 ppt salinity may also constitute a simple method for differentiating An. subpictus B/An. sundaicus larvae from those of An. subpictus species C and D in field studies.
Authors:
Sinnathamby N Surendran; Pavillupillai J Jude; Ranjan Ramasamy
Related Documents :
24640257 - Analysis of physico-chemical characteristics and metals in water sources of chromite mi...
24966437 - Bulgur processes increase nutrition value: possible role in in-vitro protein digestabil...
24385867 - Speciation studies of diorganotin(iv) complexes with 3,3-bis(1-methylimidazol-2-yl)prop...
22961427 - The influence of ph on phosphatidylethanolamine monolayer at the air/aqueous solution i...
20861897 - Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces.
1150817 - Peculiarities in gel permeation chromatography of flexible-chain polymers on macroporou...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2011-06-24
Journal Detail:
Title:  Parasites & vectors     Volume:  4     ISSN:  1756-3305     ISO Abbreviation:  Parasit Vectors     Publication Date:  2011  
Date Detail:
Created Date:  2011-07-22     Completed Date:  2011-10-25     Revised Date:  2013-06-28    
Medline Journal Info:
Nlm Unique ID:  101462774     Medline TA:  Parasit Vectors     Country:  England    
Other Details:
Languages:  eng     Pagination:  117     Citation Subset:  IM    
Affiliation:
Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka. noble@jfn.ac.lk
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animals
Anopheles / classification,  drug effects*,  growth & development,  physiology*
Disease Transmission, Infectious
Drug Tolerance*
Female
Insecticides / chemistry,  toxicity*
Malaria / transmission
Salinity*
Salts / chemistry,  toxicity*
Sri Lanka
Survival Analysis
Chemical
Reg. No./Substance:
0/Insecticides; 0/Salts
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Parasit Vectors
ISSN: 1756-3305
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2011 Surendran et al; licensee BioMed Central Ltd.
open-access:
Received Day: 18 Month: 5 Year: 2011
Accepted Day: 24 Month: 6 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 24 Month: 6 Year: 2011
Volume: 4First Page: 117 Last Page: 117
ID: 3141743
Publisher Id: 1756-3305-4-117
PubMed Id: 21702917
DOI: 10.1186/1756-3305-4-117

Variations in salinity tolerance of malaria vectors of the Anopheles subpictus complex in Sri Lanka and the implications for malaria transmission
Sinnathamby N Surendran1 Email: noble@jfn.ac.lk
Pavillupillai J Jude1 Email: pjustinjude@gmail.com
Ranjan Ramasamy2 Email: ranjan.ramasamy@ubd.edu.bn
1Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka
2Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam

Background

The major vector of Plasmodium falciparum and Plasmodium vivax malaria in Sri Lanka [1,2] is Anopheles culicifacies species E, but Anopheles subpictus s.l is also a malaria vector in many parts of the island [3-5] and elsewhere in Asia [6-8]. An. subpictus s.l. can additionally transmit filarial parasites and Japanese encephalitis and West Nile viruses [6,9,10]. The taxon An. subpictus is reported to be a complex of four sibling species, viz. A, B, C and D in India [6,7], that are differentiated through characteristic paracentric fixed inversions on the X-chromosome and stage-specific morphometric characteristics e.g. the number of ridges in egg floats, larval mesothoracic seta 4, pupal setae and ornamentation of the palpi of adult females [7]. Previous studies have reported the presence of all four sibling species in Sri Lanka based on the morphological characteristics observed in India [11,12].

Existing evidence suggests that members of the Subpictus Complex are able to breed in inland and coastal habitats, that they are generally zoophagic, both exophilic and endophilic, and that they are able to tolerate a range of salinities in their breeding sites [1,6,12-14]. The limited data on bio-ecological differences between members of the An. subpictus complex in Sri Lanka and elsewhere in Asia and their geographical distribution have been recently reviewed [1,6,13]. They indicate a need for more detailed studies to establish differences between sibling species that contribute to the range of bio-ecological characteristics observed in the Subpictus Complex.

An. subpictus species B is generally found in coastal areas of India and is reported to show greater salinity tolerance when compared to species A, C and D in breeding sites in India [14] and elsewhere in Asia [13]. Many An. subpictus species B specimens from Eastern Sri Lanka, and some others from Southeast Asia, although morphologically similar to An. subpictus, are genetically closer to Anopheles sundaicus [15]. Therefore mosquitoes in Sri Lanka with morphological characters of Indian An. subpictus B are termed An. subpictus B/An. sundaicus in this article. The differential salinity tolerance and preferences for coastal or inland breeding sites of individual members of the Subpictus Complex are yet to be clearly established in Sri Lanka. Characterization of differences in their larval habitats is important as there are known genetic differences between corresponding anophelines in Sri Lanka and neighbouring India e.g. An. culicifacies species B and E [16].

Differences in bio-ecological traits of sibling species of malaria vectors are essential for adopting appropriate vector control measures. Characteristics of malaria transmission in coastal areas in the North Central Province [12] and inland areas of North Central and Eastern Provinces [3-5] of Sri Lanka indicate the involvement of An. subpictus sibling species B and species C/D/A in the respective areas. Larval control measures have hitherto been almost exclusively applied to fresh water breeding sites of malaria vectors in Sri Lanka. The salinity tolerance and prevalence in coastal and inland sites of mosquitoes identified morphologically as belonging to the An. subpictus complex in sites located in the Eastern and Northwestern provinces of Sri Lanka were therefore investigated and the results reported here.


Results
Field collections of blood-fed adult An. subpictus females of different sibling species

Blood-fed An. subpictus-like females could be collected from sites in all the four Sri Lankan districts studied [Figure 1]. Of the 4098 blood-fed adult females that were collected during the study, 1247 laid eggs. Microscopic determination of the numbers of ridges in egg floats laid by them suggested the presence of An. subpictus B/An. sundaicus and An. subpictus species A, C and D [Table 1]. While sibling species A, C and D tended to predominate in inland localities (localities located ≥2.5 km from the coast), species B/An. sundaicus tended to be more prevalent in coastal areas. Among the inland species, sibling species C was predominant in both adult and larval collections [Tables 1 and 2]. There were fewer An. subpictus A-like females compared to other sibling species in the collections.

Characteristics of larval breeding habitats of An. subpictus sibling species

In parallel studies, 1930 larvae could be classified by examination of seta 4M and the results showed that larvae with characteristics of all four An. subpictus sibling species were present in both inland and coastal locations [Table 2]. However there was a tendency for larvae with characteristics of An. subpictus B/An. sundaicus to predominate in coastal localities [Table 2]. Larvae with characteristics of An. subpictus B/An. sundaicus were collected from both inland and coastal locations with salinity levels varying from 0 to 30 ppt (fresh, brackish and saline water are defined as having <0.5, 0.5 to 30 and >30 ppt salt respectively). Furthermore they were the only larvae collected from sites where the salinity was >4 ppt. Larvae with characteristics of An. subpictus A, C and D were only collected from sites where the salinity was ≤ 4ppt. Collection of large numbers of An. subpictus A, C and D larvae in coastal areas was associated with the rainy season (October to January) during which the salinity levels of the water bodies decreased due to dilution by rain water [Table 2]. All the breeding sites, except that in Muthur, were exposed to direct sunlight. All sites, except those in Palaiyutru and Thonikkal, had vegetation such as rooted and un-rooted floating plants (e.g. Hydrilla spp, Nelimbium spp, Salvinea spp and Eichornia spp) and green algae. An. subpictus B/An. sundaicus larvae were also collected ~ 15 m from land in the shallow waters of a lagoon at Kallady where the salinity was 30 ppt. The larvae at this site were found associated with marine algae and plants and exposed to direct sunlight [Figure 2]. The pH and dissolved oxygen concentrations of the breeding sites where the larvae were collected varied from 7.1 to 8.4 and 1.1 to 2.6 mg/L respectively.

Laboratory investigations on salinity tolerance of larvae

Larvae from mosquitoes with characteristics of An. subpictus B/An. sundaicus, and An. subpictus C and D differed in their ability to tolerate salinity. All first instar larvae with characteristics of An. subpictus B/An. sundaicus survived in water with up to 15 ppt salinity [Figure 3]. In contrast, 100% survival of larvae of An. subpictus C and D were only obtained at up to 3 ppt and 6 ppt salinity respectively. Also the third instar larvae of An. subpictus B/An. sundaicus recorded 100% survival at up to 30 ppt salinity whereas those classified as An. subpictus C and D showed 100% survival at only up to 4 ppt and 8 ppt salinity respectively [Figure 4].


Discussion

Some members of the different anopheline species complexes show high salinity tolerance and are associated with coastal malaria transmission. Anopheles melas and Anopheles merus within the Anopheles gambiae complex are examples from Africa [17]. Anopheles farauti s.s. and Anopheles irenicus (formerly designated An. farauti No. 7) in the Farauti Complex are reported to be salinity-tolerant in Australasia [13,18]. Malaria vectors of the An. sundaicus complex in Southeast Asia are well known brackish water breeders that are also able to breed in freshwater [13]. An. sundaicus larvae (cytotype D) on the Car Nicorbar Island were collected from breeding sites with salinity ranging from 0 to 14 ppt [19]. In Indonesia, An. sundaicus s.l and An. subpictus s.l populations cohabit in the same breeding sites with salinity ranging from 5 to 10 ppt [20]. An. subpictus B/An. sundaicus were collected previously from stagnant brackish water bodies in Kallady and Oluvil in Eastern Sri Lanka [15]. The present findings show that An. subpictus B/An. sundaicus populations are present in breeding sites containing algae and exposed to sunlight with 0 to 30 ppt salinity in Sri Lanka. An. sundaicus s.l. and An. subpictus s.l. have also been reported by others to prefer breeding in sunlit sites that contain algae [20]. The pH and dissolved oxygen concentrations observed here fall within the ranges reported for An. subpictus s.l. and An. sundaicus s.l. larval breeding habitats elsewhere [19,20].

The collection of adult female mosquitoes and larvae of the different sibling species of the Subpictus Complex showed an association in inland and coastal areas. Sibling species A, C and D were generally predominant in inland localities even though their larvae were found to tolerate salinity levels up to 4 ppt in breeding sites. On the other hand, An. subpictus B/An. sundaicus tended to be more prevalent in coastal localities but their larvae were found to tolerate wide range of salinity levels (0 to 30 ppt). This shows that Sri Lankan An. subpictus B/An. sundaicus are similar to malaria vectors of the Sundaicus Complex in being able to tolerate a range of salinities and breed in fresh and brackish waters.

This is the first study to evaluate the salinity tolerance of the An. subpictus-like mosquitoes under both field and laboratory conditions. The greater salinity tolerance of An. subpictus B/An. sundaicus compared to An. subpictus C and D larvae observed in laboratory studies is consistent with their presence in more brackish water in nature. The coastal populations of the Subpictus Complex have been particularly incriminated as malaria vectors in India [21,22] and the Puttalam district in western Sri Lanka [11]. The ability of An. subpictus B/An. sundaicus to breed in brackish (0.5-30 ppt salt) and fresh water (<0.5 ppt salt) indicates that it is versatile enough to transmit malaria in large parts of Sri Lanka, which is a relatively small island with an extensive coastline and large tracts of brackish water bodies that extend deep inland. This report is also the first to show that An. subpictus B/An. sundaicus is able to breed in the shallow, open waters of a lagoon, the Kallady lagoon, in Sri Lanka. The Northern, Eastern and Northwestern provinces of Sri Lanka in particular have many lagoons, with similar characteristics to the Kallady lagoon, as well as other types of highly brackish water bodies [23] that offer potential breeding sites for An. subpictus B/An. sundaicus.

The use of morphological characteristics of eggs and larvae alone to differentiate members of the An. subpictus complex can have drawbacks [15]. DNA sequence-based tests suitable for field use are not available for differentiating An. subpictus sibling species and the reported cytogenetic differences between them are not useful for field studies [8]. Further studies to correlate the morphological, cytogenetic and molecular characteristics of members of the Subpictus Complex are clearly needed. However, salinity tolerance tests have been reported to be useful in separating morphologically similar members of anopheline species complexes. Sweeney [24] reported that exposure of the first instar larvae to sea water for 1 h would help separating An. farauti No. 1 (An. farauti s.s.) from other members of the Farauti Complex. Similarly, a salinity tolerance test, using 3 parts sea water having 3.2% NaCl and 1 part fresh water which is expected to be 24 ppt salinity, has been reported to separate species A and B of the Subpictus Complex in India [14]. The present study suggests that larval tolerance to 15 ppt salinity may provide a simple and inexpensive method for use in field studies to separate mosquitoes with morphological characteristics of An. subpictus B/An. sundaicus from others with characteristics of An. subpictus species C and D in Sri Lanka. Additional investigations are needed to determine the applicability of the proposed test to sibling species A in Sri Lanka, which is generally regarded as a freshwater breeding mosquito species.

The incidence of malaria in Sri Lanka, including in its Eastern and Northwestern provinces, has markedly decreased in the past decade due in part to an effective vector control program [1,2]. It has previously been proposed that rising sea levels due to global warming may increase the breeding of salinity-tolerant malaria vectors in coastal areas [25]. Taken together with the present findings, it may therefore be prudent to carefully monitor the breeding of malaria vectors in coastal brackish waters, and apply appropriate control measures where necessary, in order to maintain good malaria control in Sri Lanka. Similar considerations also apply to many Southeast Asian countries. Water management involving tidal flushing of breeding sites and source reduction using salinization are sometimes adopted to eliminate mosquito breeding [26,27]. However this approach in Sri Lanka and elsewhere in Southeast Asia needs careful consideration when vectors such as An. subpictus B/An. sundaicus, that are able to breed in brackish and saline waters, are present.


Conclusions

The four sibling species A, B, C and D of An. subpictus identified through morphological characteristics attributed to Indian members of the An. subpictus complex, are present in Sri Lanka. An. subpictus A, C and D are generally predominant in inland areas, while An. subpictus B/An. sundaicus tends to be more prevalent in coastal localities. An. subpictus B/An. sundaicus in Sri Lanka is also able to breed in fresh to highly brackish waters including the Kallady lagoon with a salinity of 30 ppt. Brackish waters of similar high salt concentration are present in many coastal areas of Sri Lanka and Southeast Asian countries. This heightens the risk of malaria transmission in coastal areas which may be further exacerbated by rising sea levels increasing ground water salinization. Systematic monitoring of larval breeding habitats along the coastal belts of Sri Lanka and many Southeast Asian countries and the development of appropriate vector control measures are therefore needed. Based also on laboratory studies on salinity tolerance of larvae it is proposed that tolerance to 15 ppt salinity may constitute a simple method for differentiating An. subpictus B/An. sundaicus larvae from those of An. subpictus species C and D in field studies.


Methods
Mosquito collection and identification of sibling species of the Subpictus Complex

Adult anopheline mosquitoes were collected monthly in the two-year period July 2008 to June 2010 from five sites viz. Oluvil (coastal locality ~ 2 km from the coast) Chenkalady (inland locality ~ 5 km from the coast) and Muthur (inland locality ~ 3 km from the coast; coastal locality ~ 1 km from the coast) in the districts of Ampara, Batticaloa and Trincomalee respectively of the Eastern province and from Thonikkal (inland locality ~ 10 km from the coast) in the Puttalam district of the Northwestern province, all of which are located in the dry zone of Sri Lanka [Figure 1]. Collection sites located < 2.5 km from the coast are termed coastal sites. Cattle baited hut (CBHC) and cattle baited net (CBNC) collection techniques were used to collect adult female mosquitoes.

Larvae were also collected between February 2009 and June 2010 from coastal and inland locations in four administrative districts: Periakalappu (coastal locality ~ 1 km from the coast) and Dheegavavi (inland locality ~ 26 km from the coast) in the Ampara district, Thonikkal (inland locality ~ 10 km from the coast) in the Puttalam district, Chenkalady (inland locality ~5 km from the coast) and Kallady lagoon in the Batticaloa district and Muthur (coastal locality ~ 1 km from the coast) and Palaiyutru (inland locality ~2.5 km from the coast) in the Trincomalee district [Figure 1] using an 8 cm diameter and 240 ml capacity dipper as previously described [2]. Salinity of water samples was measured using a salinometer (Atago, Japan). The pH (Hanna Instruments, HI 98128, Rumania) and dissolved oxygen (Hanna Instruments, HI 8043, Rumania) were also measured in the collected water samples.

The collected adults and larvae were brought to the Zoology laboratory of the Eastern University and identified as An. subpictus s.l. using published keys [28-30]. Morphologically identified blood-fed females were maintained individually and single female F1 progenies were raised as described previously [31]. The sibling species status of females laying eggs was determined through the reported number of ridges in the floats of egg i.e. species A, 31-36; An. subpictus B/An sundaicus, 16-20; species C, 25-29 and species D, 21-24 [7]. Five to ten eggs from each female were placed on a clean microscopic slide and the number of ridges on floats counted under a light microscope (x4, Olympus). Larvae emerging from identified isofemale progenies were used for salinity tolerance experiments.

Salinity tolerance tests on larvae of An. subpictus sibling species

An. subpictus B/An. sundaicus, An. subpictus C and An. subpictus D larvae were pooled separately. There were insufficient numbers of An. subpictus species A females in field collections to generate the required numbers of larvae for salinity tolerance tests. First and early third instar larvae of each sibling species were exposed to different salinity levels viz. 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 25, 30, 35, 40 ppt ( parts per thousand of salt). Required salinities were obtained either by adding tap water (0 ppt salinity) or NaCl to seawater (36 ppt salinity) [14,32]. Salinty was measured using a refractor salinometer (Atago, Japan). Twenty larvae in 150 ml capacity plastic containers containing 100 ml of water of specific salinity were maintained at room temperature (28 ± 2°C) until their emergence as adults. Three replicates with 20 larvae each were run in parallel at each salinity level. Plastic lids were used to cover the containers to minimise evaporation. Test media were changed every alternate day. Larvae were fed twice daily with locally available powered fish meal. The number of adults emerging was determined and the results recorded as the mean percentage survival of larvae to reach adulthood at each salinity level ± standard error of the mean.


Competing interests

The authors declare that they have no competing interests.


Authors' contributions

SNS and RR conceived the study. PJJ performed field collections. PJJ and SNS carried out laboratory studies. SNS and RR wrote the manuscript. All authors read and approved the final manuscript.


Acknowledgements

The authors thank Ms Rena Verginate Edward for Figure 1 and Dr. M. Vinobaba (Department of Zoology, Eastern University of Sri Lanka) for logistical support. This study was supported by the National Science Foundation of Sri Lanka grant SIDA/BT/2006/03.


References
Surendran SN,Ramasamy R,The Anopheles culicifacies and An. subpictus complexes in Sri Lanka and their implications for malaria control in the countryTrop Med HealthYear: 20103811110.2149/tmh.2009-12
Jude PJ,Dharshini S,Vinobaba M,Surendran SN,Ramasamy R,Anopheles culicifaciesbreeding in brackish waters in Sri Lanka and implications for malaria controlMalar JYear: 2010910610.1186/1475-2875-9-10620409313
Amerasinghe PH,Amerasinghe FP,Wirtz RA,Indrajith NG,Somapala W,Preira LR,Rathnayake AMC,Malaria transmission by Anopheles subpictus Grassi in a new irrigation project in Sri LankaJ Med EntomolYear: 1992295775811495065
Ramasamy R,Ramasamy MS,Wijesundera DA,Wijesundera AP,de S,Dewit I,Ranasinghe C,Srikrishnarajah KA,Wickramarantne C,High seasonal malaria transmission rates in the intermediate rainfall zone of Sri LankaAnn Trop Med ParasitolYear: 1992865916001304700
Amerasinghe PH,Amerasinghe FP,Kondradsen F,Fonseka KT,Wirtz RA,Malaria vectors in a traditional dry zone village in Sri LankaAm J Trop Med HygYear: 19996042142910466971
Chandra G,Bhattacharjee I,Chatterjee S,A review on Anopheles subpictus Grassi - A biological vectorActa TropYear: 20101151-214215410.1016/j.actatropica.2010.02.00520153284
Suguna SG,Rathinam KG,Rajavel AR,Dhanda V,Morphological and chromosomal descriptions of new species in the Anopheles subpictus complexMed Vet EntomolYear: 19948889410.1111/j.1365-2915.1994.tb00392.x8161853
World Health OrganisationAnopheline Species Complexes in South and South-East AsiaYear: 2007SEARO Technical Publication No.57. World Health Organisation. Geneve7376
Thenmozhi V,Rajendran R,Ayanar K,Manavalan R,Tyagi BK,Long-term study of Japanese encephalitis virus infection in Anopheles subpictus in Cuddalore district, Tamil Nadu, South IndiaTrop Med Int HealthYear: 200611328829310.1111/j.1365-3156.2006.01567.x16553908
Hubálek Z,Halouzka J,West Nile fever - a reemerging mosquito-borne viral disease in EuropeEmerg Infect DisYear: 19995264365010511520
Abhayawardana TA,Wijesuria SRE,Dilrukshi RRKC,Anopheles subpictus complex: distribution of sibling species in Sri LankaIndian J MalariolYear: 19963353608952168
Abhayawardana TA,Wickramasinghe MB,Amerasinghe FP,Sibling species of Anopheles subpictus and their seasonal abundance in Chilaw areaProc Sri Lanka Assoc Advan SciYear: 19995517
Sinka ME,Bangs MJ,Chareonviriyaphap T,Patil AP,Temperley WH,Gething PW,Elyazar IRF,Kabaria CW,Harbach RE,Hay SI,The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précisParasites & VectorsYear: 201148910.1186/1756-3305-4-8921612587
Reuban R,Kalyanasundaram M,Suguna G,Salinity tolerance of sibling species in the taxon Anopheles subpictus Grassi, 1899Indian J Med ResYear: 19848067706519721
Surendran SN,Singh OP,Jude PJ,Ramasamy R,Genetic evidence for malaria vectors of the Anopheles sundaicus complex in Sri Lanka with morphological characteristics attributed to Anopheles subpictus species BMalar JYear: 2010934321114832
Surendran SN,Hawkes NJ,Steven A,Hemingway J,Ramasamy R,Molecular studies of Anopheles culicifacies (Diptera: Culicidae) in Sri Lanka: sibling species B and E show sequence identity at multiple lociEur J Entomol103233237
Coluzzi M,Sabatini A,Cytogenetic observations on the salt water species, Anopheles merus and Anopheles melas of the Gambiae complexParassitologiaYear: 196911177187
Foley DH,Bryan JH,Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon IslandsMed Vet EntomolYear: 20001445045210.1046/j.1365-2915.2000.00268.x11129712
Sharma SK,Adak T,Haq S,Kar I,Observations on the relationship of salinity with the breeding habitats of Anopheles sundaicus (Diptera: Culicidae) at Car Nicobar Islands, IndiaMosquito-Borne Diseases BulletinYear: 1999163336
Collins RT,Jung RK,Anoez H,Sutrisno RH,Putut D,A study of the coastal malaria vectors Anopheles sundaicus (Rodenwaldt) and Anopheles subpictus (Grassi) in South Sulawesi, Sulawesi, Indonesia WHO/MAL/79.913.
Panicker KN,Geetha BM,Bheema RUS,Wiswam K,Suryanarayana MU,Anopheles subpictus: vector of malaria in coastal villages of southeast IndiaCurr SciYear: 198150694695
Sahu SS,Comparative susceptibility of Anopheles subpictus from fresh and brackish water areas to Plasmodium falciparum infectionActa TropYear: 1998701710.1016/S0001-706X(97)00140-X9707359
Steele P,Konradsen F,Imbulana KAUS,Irrigation, health, and the environment: A literature review with examples from Sri LankaYear: 1997Colombo, Sri Lanka: IIMI. V, 25p (Discussion Paper No. 42).
Sweeney AW,Larval salinity tolerances of the sibling species of Anopheles farautiJ Am Mosq Cont AssocYear: 19873589592
Ramasamy R,Surendran SN,Possible impact of a rise in sea levels on vector-borne infectious diseasesBMC Infect DisYear: 2011111810.1186/1471-2334-11-1821241521
Daggy RH,The biology and seasonal cycle of Anopheles farauti on espiritu Santo New HebridesAnn Entomol Soc AmYear: 194538313
Foley DH,Bryan JH,Oviposition preference for freshwater in the coastal malaria vector, Anopheles farautiJ Am Mosq Cont AssocYear: 199915291294
Christophers SR,The Fauna of British India, including Ceylon and Burma. Diptera 4. Family Culicidae. Tribe AnophelineYear: 1933Taylor & Francis, London
Amerasinghe FP,A guide to the identification of the anopheline mosquitoes (Diptera: Culicidae) of Sri Lanka-I Adult femalesCeylon J Sci (Bio Sci)Year: 199021116
Amerasinghe FP,A guide to the identification of the anopheline mosquitoes (Diptera: Culicidae) of Sri Lanka-II LarvaeCeylon J Sci (Bio Sci)Year: 199222113
Surendran SN,Ramasamy MS,De Silva BGDNK,Ramasamy R,Anopheles culicifacies sibling species B and E in Sri Lanka differ in longevity and in their susceptibility to malaria parasite infection and common insecticidesMed Vet EntomolYear: 20062015315610.1111/j.1365-2915.2006.00601.x16608500
Mosha FW,Subra R,Salinity and breeding of Culex quinquefasciatus Say, Anopheles funestus Giles and Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) on the Kenya CoastCah ORSTOM sér Ent méd et ParasitolYear: 1983XXI135138

Figures

[Figure ID: F1]
Figure 1 

Map showing the adult and larval collection sites and the climatic zones (dry, intermediate and wet) of Sri Lanka.



[Figure ID: F2]
Figure 2 

Photograph of the Kallady lagoon site (30 ppt salinity) where An. subpictus species B/An. sundaicus larvae were collected in association with marine algae >15 m into the lagoon.



[Figure ID: F3]
Figure 3 

Mean percentage survival to adulthood of first instar larvae of An. subpictus B/ An. sundaicus, and An. subpictus C and D at different levels of salinity.



[Figure ID: F4]
Figure 4 

Mean percentage survival to adulthood of third instar larvae of An. subpictus species B/An. sundaicus, and An. subpictus C and D at different levels of salinity.



Tables
[TableWrap ID: T1] Table 1 

Adult females in field collections characterized as An.subpictus sibling species A, B/An. sundaicus, C and D through morphology of laid eggs


Districts Location Type of locality Numbers of adult females

A B/An. sundaicus C D
Batticaloa Chenkalady Inland 4 187 387 82
Ampara Oluvil Coastal 0 65 67 20
Puttalam Thonikkal Inland 0 74 120 34
Trincomalee Muthur Coastal 0 24 0 0
Inland 0 33 128 22

TOTAL 4 383 702 158

[TableWrap ID: T2] Table 2 

Larvae with characteristics of An.subpictus sibling species A, B/An. sundaicus, C and D collected from different sites during the period February 2009 - June 2010


District Location Type of locality Type of breeding site Salinity (ppt) Number of larvae of the
An. subpictus sibling species

A B C D
Batticaloa Chenkalady Inland Pond 0 - 06 26 09
Kallady Coastal Sand pool 0 24 - 54 81
Sand pool 2 7 215 147 32
Sand pool 4 - 253 27 07
Kallady Coastal Sand pool 0 - - 12 -
Sand pool 3 - - 19 3
Lagoon margin 22 - 68 - -
Lagoon margin 30 - 112 - -

Puttalam Thonikkal Inland Quarry 0 - 67 114 -

Ampara Periakalappu Coastal Sand pool 18 - 12 - -
Sand pool 30 - 5 - -
Dheegavavi Inland Pond 0 - 24 93 49

Trincomalee Muthur Coastal Sand pool 0 31 18 25 -
Sand pool 2 - 41 06 -
Muthur Coastal Well 0 - 55 87 -
Coastal Sand pool 2 - 12 27 -
Palaiyutru Inland Irrigation canal 0 7 26 103 26


Article Categories:
  • Research


Previous Document:  The risk factor profile of women with secondary infertility: an unmatched case-control study in Kiga...
Next Document:  Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy old...