Document Detail


Variational bayesian blind deconvolution using a total variation prior.
MedLine Citation:
PMID:  19095515     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
In this paper, we present novel algorithms for total variation (TV) based blind deconvolution and parameter estimation utilizing a variational framework. Using a hierarchical Bayesian model, the unknown image, blur, and hyperparameters for the image, blur, and noise priors are estimated simultaneously. A variational inference approach is utilized so that approximations of the posterior distributions of the unknowns are obtained, thus providing a measure of the uncertainty of the estimates. Experimental results demonstrate that the proposed approaches provide higher restoration performance than non-TV-based methods without any assumptions about the unknown hyperparameters.
Authors:
S Derin Babacan; Rafael Molina; Aggelos K Katsaggelos
Related Documents :
12712595 - The use of toxic equivalency factor distributions in probabilistic risk assessments for...
10028135 - Evaluation of the bias in using the time to the first event when the inter-event interv...
3580485 - Resolvability of fluorescence lifetime distributions using phase fluorometry.
21223945 - Characteristics and models of human symmetry detection.
6137085 - Teratogenesis: a statistical structure-activity model.
11501625 - Deterministic chaos and noise in three in vitro hippocampal models of epilepsy.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  IEEE transactions on image processing : a publication of the IEEE Signal Processing Society     Volume:  18     ISSN:  1057-7149     ISO Abbreviation:  IEEE Trans Image Process     Publication Date:  2009 Jan 
Date Detail:
Created Date:  2008-12-19     Completed Date:  2009-02-19     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9886191     Medline TA:  IEEE Trans Image Process     Country:  United States    
Other Details:
Languages:  eng     Pagination:  12-26     Citation Subset:  IM    
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, IL 60208-3118, USA. sdb@northwestern.edu
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Algorithms*
Artifacts*
Artificial Intelligence*
Bayes Theorem
Computer Simulation
Image Enhancement / methods*
Image Interpretation, Computer-Assisted / methods*
Models, Statistical
Pattern Recognition, Automated / methods*
Reproducibility of Results
Sensitivity and Specificity

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  A skeleton family generator via physics-based deformable models.
Next Document:  Image sequence denoising via sparse and redundant representations.