Validity of estimating minutebyminute energy expenditure of continuous walking bouts by accelerometry.  
Jump to Full Text  
MedLine Citation:

PMID: 21864359 Owner: NLM Status: MEDLINE 
Abstract/OtherAbstract:

BACKGROUND: Objective measurement of physical activity remains an important challenge. For wearable monitors such as accelerometerbased physical activity monitors, more accurate methods are needed to convert activity counts into energy expenditure (EE). PURPOSE: The purpose of this study was to examine the accuracy of the refined Crouter 2Regression Model (C2RM) for estimating EE during the transition from rest to walking and walking to rest. A secondary purpose was to determine the extent of overestimation in minutebyminute EE between the refined C2RM and the 2006 C2RM. METHODS: Thirty volunteers (age, 28 ± 7.7 yrs) performed 15 minutes of seated rest, 8 minutes of overground walking, and 8 minutes of seated rest. An ActiGraph GT1M accelerometer and Cosmed K4b2 portable metabolic system were worn during all activities. Participants were randomly assigned to start the walking bout at 0, 20, or 40 s into the minute (according to the ActiGraph clock). Acceleration data were analyzed by two methods: 2006 Crouter model and a new refined model. RESULTS: The 2006 Crouter 2Regression model overpredicted measured kcal kg1 hr1 during the first and last transitional minutes of the 20s and 40s walking conditions (P < 0.001). It also overpredicted the average EE for a walking bout (4.0 ± 0.5 kcal kg1 hr1), compared to both the measured kcal kg1 hr1 (3.6 ± 0.7 kcal kg1 hr1) and the refined Crouter model (3.5 ± 0.5 kcal kg1 hr1) (P < 0.05). CONCLUSION: The 2006 Crouter 2regression model overpredicts EE at the beginning and end of walking bouts, due to high variability in accelerometer counts during the transitional minutes. The new refined model eliminates this problem and results in a more accurate prediction of EE during walking. 
Authors:

Erin E Kuffel; Scott E Crouter; Jere D Haas; Edward A Frongillo; David R Bassett 
Related Documents
:

20568739  Concentrations and fate of decamethylcyclopentasiloxane (d(5)) in the atmosphere. 16739789  Critique of "precipitation in light extinction reconstruction" by p.a. ryan. 21945979  Psychosocial correlates of physical activity in two cultural contexts: different pathways? 16295279  Air quality modeling of interpollutant trading for ozone precursors in an urban area. 16649599  Urban air pollution forecasting with respect to spm using time series neural networks m... 22124509  Comparison of estimated and actual changes in gap widths of expansion screws in plate a... 19021439  Optimization of fluorescence enhancement for siliconbased microarrays. 15893399  Ginafit, a freeware tool to assess nonloglinear microbial survivor curves. 25118009  Modelling the effects of cochlear implant current focusing. 
Publication Detail:

Type: Journal Article; Research Support, N.I.H., Extramural; Validation Studies Date: 20110824 
Journal Detail:

Title: The international journal of behavioral nutrition and physical activity Volume: 8 ISSN: 14795868 ISO Abbreviation: Int J Behav Nutr Phys Act Publication Date: 2011 
Date Detail:

Created Date: 20110912 Completed Date: 20111128 Revised Date: 20130627 
Medline Journal Info:

Nlm Unique ID: 101217089 Medline TA: Int J Behav Nutr Phys Act Country: England 
Other Details:

Languages: eng Pagination: 92 Citation Subset: IM 
Affiliation:

Department of Health, Exercise & Rehabilitative Services, PO Box 5838, 175 W Mark Street, Room 358 Maxwell, Winona, MN 55987, USA. ekuffel@winona.edu 
Export Citation:

APA/MLA Format Download EndNote Download BibTex 
MeSH Terms  
Descriptor/Qualifier:

Actigraphy
/
methods* Adult Body Mass Index Data Collection Energy Metabolism* Female Humans Male Questionnaires Regression Analysis Reproducibility of Results Rest* Walking* Young Adult 
Grant Support  
ID/Acronym/Agency:

01R21 CA12243001/CA/NCI NIH HHS 
Comments/Corrections 
Full Text  
Journal Information Journal ID (nlmta): Int J Behav Nutr Phys Act ISSN: 14795868 Publisher: BioMed Central 
Article Information Download PDF Copyright ©2011 Kuffel et al; licensee BioMed Central Ltd. openaccess: Received Day: 14 Month: 2 Year: 2011 Accepted Day: 24 Month: 8 Year: 2011 collection publication date: Year: 2011 Electronic publication date: Day: 24 Month: 8 Year: 2011 Volume: 8First Page: 92 Last Page: 92 ID: 3170241 Publisher Id: 14795868892 PubMed Id: 21864359 DOI: 10.1186/14795868892 
Validity of estimating minutebyminute energy expenditure of continuous walking bouts by accelerometry  
Erin E Kuffel1  Email: ekuffel@winona.edu 
Scott E Crouter2  Email: scott.crouter@umb.edu 
Jere D Haas3  Email: jdh12@cornell.edu 
Edward A Frongillo4  Email: efrongillo@sc.edu 
David R Bassett, Jr5  Email: dbassett@utk.edu 
1Department of Health, Exercise & Rehabilitative Services, PO Box 5838, 175 W Mark Street, Room 358 Maxwell, Winona, MN 55987 USA 

2Dept. of Exercise and Health Sciences, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125 USA 

3Division of Nutritional Sciences, 211 Savage Hall, Cornell University, Ithaca, NY 14853 USA 

4Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, 800 Sumter Street, Room 216, University of South Carolina, Columbia, South Carolina 29208 USA 

5Department of Exercise, Sport, and Leisure Studies, The University of Tennessee, 1914 Andy Holt Avenue, Knoxville, TN 379962700 USA 
Accelerometers, such as the ActiGraph or Actical, are often used to provide an objective record of physical activity. However, conventional methods of analyzing accelerometer count data have used a single linear regression equation to convert counts into energy expenditure (EE) [^{1}^{}^{3}]. These single regression equations are developed specifically for each accelerometer brand due to differences in how companies convert the raw acceleration into counts. In general, single linear regression equations, regardless of which brand they were developed for, that are developed on walking and running are valid for those activities, but they underestimate EE for most other types of moderate and vigorous physical activity and overestimate light physical activity [^{4},^{5}]. Due to the inherent errors in single regression models, researchers have sought to develop other approaches for analyzing accelerometer data.
One such approach, developed for use with the ActiGraph accelerometer, is the 2006 Crouter 2regression model (C2RM), which does not assume a linear relationship between mean counts and metabolic equivalents (METs) for all activities [^{6}]. Instead, it examines the variability among six consecutive 10s epochs within a oneminute period to predict EE. If there is a low variability among the 10s epochs, a walk/run regression equation is used, but if the variability among 10s epochs is high, a different equation is used for intermittent lifestyle activities.
The 2006 C2RM, for the ActiGraph accelerometer, was an improvement over previous ActiGraph single regression equations [^{1}^{}^{3}] because it predicted EE more accurately across a wide range of activities [^{6}]. However, a potential problem is that the 2006 C2RM examines six consecutive 10s epochs and therefore it assumes that an individual is performing an activity for the entire minute on the ActiGraph clock. However, if a walking bout were to start or stop in the middle of a minute, that minute would exhibit high variability in accelerometer counts since rest and walking would be included within the same minute. Thus, the transitional minute could be misclassified as an intermittent lifestyle activity, resulting in an overprediction of EE due to the use of the wrong regression equation.
Therefore, a refinement of the 2006 C2RM, for the ActiGraph accelerometer, has been proposed [^{7}]. The refined C2RM [^{7}] is based on similar principles to the 2006 C2RM [^{6}], but the refined method allows for any continuous walking bout lasting 60 seconds or longer to be accurately determined, regardless of where it starts or stops on the ActiGraph clock. Thus, a major difference between the refined C2RM and the 2006 C2RM is that EE is estimated every 10 seconds, rather than every 60 seconds allowing for a more accurate prediction of EE. However, the refined C2RM has not been rigorously tested under various walking conditions.
The purpose of this study was to examine the accuracy of the refined C2RM [^{7}] for estimating EE during the transition from rest to walking, and back to rest. A secondary purpose was to determine the extent of overestimation in minutebyminute EE between the refined C2RM [^{7}] and the 2006 C2RM [^{6}]. We hypothesized that the refined C2RM would eliminate the overestimation of EE that occurs with the 2006 model, during transitions from rest to walking, and back to rest. We also hypothesized that the refined C2RM would predict minutebyminute EE more accurately than the 2006 C2RM.
Thirty participants from the University of Tennessee, Knoxville and surrounding community volunteered to take part in this study. The study was approved by the University of Tennessee Institutional Review Board and the Cornell University Committee on Human Subjects. All participants were informed of potential risks and benefits of the study before they provided written informed consent. A health history questionnaire was completed and participants were excluded if they were pregnant or had any contraindications to exercise. Height and body mass (in light clothing and no shoes) were measured using a stadiometer and physician's scale, respectively. Body mass index (BMI) was calculated according to the formula: body mass in kilograms (kg) divided by height squared in meters (m^{2}).
Each participant was randomly assigned to one of three preplanned conditions: activities starting at 0, 20, or 40 s after the minute on the ActiGraph clock. Based on the condition assignment, the participant started the activity at the appropriate time corresponding to the ActiGraph GT1M clock, which was synchronized with a digital stopwatch. For example, if the participant was assigned to the 0s condition, the participant started and stopped each activity exactly on the minute of the ActiGraph clock, the 20s and 40s conditions started and stopped each activity exactly 20 s and 40 s after the minute, respectively. For each condition, the participant performed 15 minutes of seated rest, 8 minutes of continuous walking at a selfselected pace around the perimeter of a gymnasium, and 8 minutes of seated rest. A 5s countdown was given so the participant started the walking bout at the correct time on the ActiGraph clock. The distance was measured with a measuring wheel for an accurate measurement of total distance walked.
Each participant wore an ActiGraph GT1M accelerometer on the right hip, and oxygen consumption (VO_{2}) was measured with a Cosmed K4b^{2}, for all activities. All trials took place at the University of Tennessee, Knoxville.
The ActiGraph GT1M (ActiGraph, Pensacola, Florida) is a uniaxial accelerometer. It was initialized using 1s epochs and synchronized with a digital clock, so the start time could be synchronized with the Cosmed K4b^{2}. During the testing it was attached to a nylon belt and positioned on the right hip at the anterior axillary line. Three GT1M accelerometers were used and were calibrated by the manufacturer prior to the start of the study. At the completion of the testing, the data were downloaded to a laptop computer and then converted to 10s epochs using a Visual Basic program.
The Cosmed K4b^{2 }(Cosmed, Rome, Italy) is a portable indirect calorimeter that weighs 1.6 kg (including the battery pack and harness). Each participant wore the Cosmed K4b^{2 }to collect breathbybreath respiratory data. During testing, the Cosmed K4b^{2 }was attached to the participant's chest with the use of the manufacturer's harness. Each participant was fitted with a rubber facemask and disposable gel seal (HansRudolph, Kansas City, MO) to prevent air leaks. The Cosmed K4b^{2 }was calibrated according to the manufacturer's guidelines before each trial. All data were stored in the Cosmed K4b^{2 }during the trials and then downloaded to a laptop computer.
Data for one participant were excluded due to problems encountered when downloading the data. Therefore, one other participant performed two separate conditions (0s and 40s conditions) to ensure that we had 10 participants per condition for analyses.
Breathbybreath data from the Cosmed K4b^{2 }were averaged over 1minute. Body mass was adjusted for the weight of the ActiGraph GT1M and Cosmed K4b^{2 }by adding 1.7 kg to the subject's body mass. For each minute of the activity bout, the measured values were determined by the Cosmed K4b^{2 }and converted to kcal kg^{1 }hr^{1 }based on the conversion 1 MET = 1 kcal kg^{1 }hr^{1}.
The 2006 C2RM [^{6}] and refined C2RM [^{7}] were used to predict EE using the ActiGraph GT1M accelerometer data. Both the C2RMs use an inactivity threshold, below which the subject is credited with 1.0 kcal kg^{1 }hr^{1}. Both methods then examine the variability in counts and determine whether to use a continuous walk/run equation or intermittent lifestyle equation to predict EE (Table 1). A more detailed explanation of the refined C2RM is presented elsewhere [^{7}]. In this study, we chose to express the EE values as oneminute averages, since nearly all researchers express their data in this manner [^{8}^{}^{10}].
Data analyses were performed using SPSS 16.0 for Windows (SPSS Inc., Chicago, IL). For all analyses, an alpha of 0.05 was used to denote statistical significance. The mean (± SD) values of predicted and measured kcal kg^{1 }hr^{1 }for all 10 participants in each condition (0s, 20s, 40s) were computed. For each walking condition, an average kcal kg^{1 }hr^{1 }value was calculated for the Cosmed K4b^{2 }and the ActiGraph GT1M (2006 C2RM and refined C2RM). Repeated measures ANOVAs were used to statistically compare the average measured and predicted kcal kg^{1 }hr^{1 }values, for the total walking bout, for each condition. When appropriate, pairwise comparisons with Bonferroni adjustments were performed to locate significant differences.
To examine the validity of the 2006 and refined C2RMs during the transitions from rest to walking and back to rest, error scores (measured minus predicted kcal kg^{1 }hr^{1}) were calculated for each minute, for each participant. A mixed model implemented as a twoway repeatedmeasures ANOVA was then used to analyze the data for each prediction equation, with condition being the amongparticipant factor and time (i.e., minute of the activity bout) being the withinparticipant factor. The interaction between condition and time was tested, and, in the cases of significant interaction, one sample ttests were used to determine if the mean error score was significantly different from zero at each time point.
BlandAltman plots [^{11}] were created for each condition to graphically show the individual error between measured and predicted kcal kg^{1 }hr^{1 }values during the walking bouts, including the transitional minutes. This allowed for the mean error score and the 95% prediction interval (95% PI) to be shown. Prediction equations that are accurate will display a tighter prediction interval around zero. Data points below zero signify an overestimation, while data points above zero signify an underestimation.
Thirty (14 male and 16 female) participants completed the study (mean (± SD) age 28 ± 7.7 yrs; body mass index (BMI) 24.6 ± 3.6 kg m^{2}; 69% Caucasian, 17% African American, 7% Hispanic, 7% Other). Due to the differences in start times for each activity, different terminology was necessary. For the 0s condition, the first minute of activity was referred to as "minute 1" with the remaining minutes labeled sequentially. For the 20s and 40s conditions, the first minute of the walking bout (i.e., transition from rest to walking) and the last minute of the bout (i.e., transition from walking to rest) were referred to as the first and last transitional minutes, respectively. The participants in these two conditions started and stopped walking 20 s and 40 s after the beginning of a minute on the ActiGraph clock, so the transitional minutes included time spent in both rest and activity. The minutes between the transitions consisted only of walking, and were labeled minutes 27. For example, a participant in the 20s condition would have data for the first transitional minute, 7 full minutes of walking, and the last transitional minute.
Figure 1 shows the measured and predicted EE values for each condition according to two different prediction equations. There was a significant interaction between time and condition for the walking bouts (P < 0.001), thus each condition was analyzed separately. Table 2 displays the mean (SD) energy cost during walking by condition. Except for the 0s condition, the 2006 C2RM significantly overpredicted the mean energy cost (P = 0.02), while the refined C2RM was not significantly different from the mean measured energy cost (P > 0.05; Table 2). During the first minute of the 0s bout, however, the 2006 and the refined C2RM significantly overpredicted measured EE by 1.2 ± 1.0 kcal kg^{1 }hr^{1}and 0.7 ± 0.5 kcal kg^{1 }hr^{1}, respectively (P < 0.01). These overestimates of the measured EE during the first minute of the 0s bout were not significantly different from each other (p = 0.4). In addition, the 2006 C2RM and refined C2RM significantly overpredicted the measured EE in the first transitional minute in the 20s condition by 3.3 ± 0.6 kcal kg^{1 }hr^{1 }and 1.1 kcal kg^{1 }hr^{1}, respectively (P < 0.001). These overpredictions in the first transitional minute of the 20s bout were significantly different from each other (P < 0.001). The 2006 C2RM also overpredicted the measured EE in last transitional minute of the 40s condition (P < 0.001).
For each walking condition, the BlandAltman plots (Figure 2) showed greater individual error for the 2006 C2RM compared to the refined C2RM. Specifically, for the 0sec condition, the 2006 C2RM had a mean bias of 0.14 kcal kg^{1 }hr^{1 }(95% PI: 2.4, 2.2 kcal kg^{1 }hr^{1}) and the refined C2RM had a mean bias of 0.16 kcal kg^{1 }hr^{1 }(95% PI: 1.5, 1.8 kcal kg^{1 }hr^{1}). For the 20s and 40s conditions the 2006 and refined C2RM had similar mean bias and 95% PIs as what was seen for the 0s condition.
There were two main findings of this study. First, the refined C2RM was a significant improvement over the 2006 C2RM and it closely reflected the measured kcal kg^{1 }hr^{1 }values, averaged over the entire bout, for all three conditions as hypothesized. Second, it was found that the refined C2RM predicted EE significantly better than the 2006 C2RM during transitional minutes from walking to resting.
Examining the first minute of the 0s condition, there was a significant difference between the 2006 and refined C2RMs and measured EE. These differences resulted from the lag in oxygen uptake at the beginning of a bout (i.e., the "oxygen deficit"), as shown in Figure 1[^{12}]. The predicted values of the first minute were similar to the measured steady state values, showing that both models accurately predict steady state EE values when the walking bouts start in synchronization with the ActiGraph clock. In contrast, during the first and last transitional minutes of the 20s and 40s conditions, the 2006 C2RM significantly overpredicted the measured kcal kg^{1 }hr^{1}. The main reason is that the transitional minutes included some "0" counts in the beginning and end of the walking bouts, which increased the coefficient of variation (CV) within those minutes, causing the models to use the intermittent lifestyle equation. This led to an overprediction of EE, which is especially evident in the first transitional minute of the 20s bout and the last transitional minute of the 40s bout.
The refined C2RM predicted EE more accurately than the original 2006 C2RM because it eliminated the overpredictions at the beginning and end of a walking bout without affecting the steady state values. Short (< 1 min), intermittent, walking bouts interspersed with inactivity would be classified as lifestyle activity, which was intentional. We chose not to identify bouts lasting less than 60 seconds as "walking" because brief periods of walking are often performed within the context of intermittent lifestyle activities (e.g., lawnmowing, golf, and garden work). Thus, there is a risk that these lifestyle activities would be misclassified as walking, using that approach.
Based on the BlandAltman plots, the refined C2RM provided a closer mean estimate than the 2006 C2RM. The one exception was for the 0s condition where the 2006 and refined C2RM had similar mean errors; we expected this since the walking bout started exactly on the minute of the ActiGraph clock. For the 20s and 40s conditions the mean error was closer to zero for the refined C2RM due to it not being influenced by the transitions between walking and rest. In addition, for all walking conditions, the refined C2RM had tighter 95%PIs around the mean, indicating that it provided a more accurate individual prediction during structured walking bouts. An improvement in the individual prediction is an important step forward to obtaining more accurate predictions of freeliving physical activity.
Recently Rothney and colleagues found that the 2006 C2RM significantly overpredicted EE measured by doublylabeled water (DLW) and wholeroom calorimetry by 6.0% and 10.2%, respectively [^{13}]. Although we cannot be certain of what is causing this overestimation (since DLW does not capture minutebyminute EE), the Rothney study did show the 2006 C2RM to overestimate moderate PA by 36.9 min compared to the wholeroom calorimeter [^{13}]. We hypothesize that the overestimations by the 2006 C2RM were likely due to the presence of multiple transitional minutes during their testing which would result in the misclassification of walking as intermittent, lifestyle activity, thus causing EE and time spent in moderate activity to be overestimated. Further, in a separate study we have shown that the refined C2RM significantly improved estimated EE and time spent in moderate activity during 6 hours of freeliving measurement, compared to indirect calorimetry [^{14}]. At this time it is difficult to quantify how much the refined C2RM improves upon the 2006 C2RM. During continuous walking bouts of long duration we would expect little improvement in the prediction of EE, since it is only the transitional minutes at the start and end of the bout that are being misclassified. However, individuals generally perform walking bouts of short duration which are mixed with intermittent lifestyle activities [^{15}]. It was these shorter bouts of walking that were being misclassified resulting in an overestimation of EE and moderate activity. Future research should investigate the implications of these shorter bouts to be able to quantify the improvement of the refined C2RM compared to the 2006 C2RM in freeliving environments.
A major strength of the current study is that we examined the time course of changes in measured and predicted kcal kg^{1 }hr^{1}, rather than simply examining mean EE across the entire activity bout. This allowed us to examine the walktorest transitions in detail. In addition, we were able to examine walking at a selfselected pace, which makes the results applicable to reallife settings.
The main limitation of this study is that we only validated the refined C2RM for walking bouts of 8 minutes duration, although we believe that continuous walking bouts as short as 1 minute can be identified using this technique. Future research is needed to determine the accuracy of the new, refined approach over longer time periods in freeliving individuals, using doubly labeled water. Another limitation is that the 2006 C2RM was developed using the ActiGraph 7164, while the current study used the ActiGraph GT1M. Although different models were used, we do not feel it substantially influenced the results as it has been shown that the 7164 and GT1M give comparable count values during treadmill walking and running [^{16}].
In conclusion, the 2006 C2RM significantly overpredicted EE during walking when the walking bout did not start in synchronization with the ActiGraph clock. The overprediction of EE in the first and last minutes of the walking bouts for the 20s and 40s condition was due to the high CV during the transitional minutes. However, we observed that a refined C2RM [^{7}] eliminated the overpredictions of EE that are likely to occur at the beginning and end of continuous walking bouts, and should therefore be used in future studies.
EE: energy expenditure; C2RM: Crouter 2Regression Model; MET: metabolic equivalent; BMI: body mass index; VO_{2}: oxygen consumption; CV: coefficient of variation
The authors declare that they have no competing interests.
EK acquired data, assisted with analysis and interpretation, and was primarily involved in drafting and revising the current manuscript. SC made substantial contributions to the concept and design of the project, data analysis and interpretation, and has been involved with drafting and revising the manuscript. JH made a substantial contribution to the concept and design of the project, as well as, revisions to the current manuscript. EF made a substantial contribution to the concept and design of the project, as well as, revisions to the current manuscript. DB made substantial contributions to the concept and design of the project, data analysis and interpretation, and drafting and revising the current manuscript. All authors have given final approval of the version to be published.
This study was supported by NIH Grant 01R21 CA12243001. No financial support was received by the ActiGraph manufacturer.
References
Freedson PS,Melanson E,Sirard J,Calibration of the computer science and applications, inc. AccelerometerMed Sci Sports ExercYear: 19983057778110.1097/00005768199805000000219588623  
Hendelman D,Miller K,Baggett C,Debold E,Freedson P,Validity of accelerometry for the assessment of moderate intensity physical activity in the fieldMed Sci Sports ExercYear: 2000329 SupplS442910993413  
Swartz AM,Strath SJ,Bassett DR Jr,O'Brien WL,King GA,Ainsworth BE,Estimation of energy expenditure using csa accelerometers at hip and wrist sitesMed Sci Sports ExercYear: 200032S9S450S610993414  
Bassett DR Jr,Ainsworth BE,Swartz AM,Strath SJ,O'Brien WL,King GA,Validity of four motion sensors in measuring moderate intensity physical activityMed Sci Sports ExercYear: 200032S9S471S8010993417  
Crouter SE,Churilla JR,Bassett DR Jr,Estimating energy expenditure using accelerometersEur J Appl PhysiolYear: 20069866011210.1007/s004210060307517058102  
Crouter SE,Clowers KG,Bassett DR Jr,A novel method for using accelerometer data to predict energy expenditureJ Appl PhysiolYear: 2006100413243116322367  
Crouter SE,Kuffel EE,Frongillo EA,Haas JD,Bassett DRJ,Refined tworegression model for the actigraph accelerometerMed Sci Sports ExercYear: 201042510293710.1249/MSS.0b013e3181c3745820400882  
Hawkins MS,Storti KL,Richardson CR,King WC,Strath SJ,Holleman RG,et al. Objectively measured physical activity of USA adults by sex, age, and racial/ethnic groups: A crosssectional studyInt J Behav Nutr Phys ActYear: 200963110.1186/1479586863119493347  
Clanchy KM,Tweedy SM,Boyd RN,Trost SG,Validity of accelerometry in ambulatory children and adolescents with cerebral palsyEur J Appl PhysiolYear: 2011  
Tucker JM,Welk GJ,Beyler NK,Physical activity in u.S. Adults compliance with the physical activity guidelines for americansAm J Prev MedYear: 20114044546110.1016/j.amepre.2010.12.01621406280  
Bland JM,Altman DG,Statistical methods for assessing agreement between two methods of clinical measurementLancetYear: 198618476307102868172  
Powers SK,Howley ET,Exercise physiology: Theory and application to fitness and performanceYear: 20076New York: McGrawHill Companies, Inc  
Rothney MP,Brychta RJ,Meade NN,Chen KY,Buchowski MS,Validation of the actigraph tworegression model for predicting energy expenditureMed Sci Sports ExercYear: 201042917859210.1249/MSS.0b013e3181d5a98420142778  
Crouter SE,DellaValle DM,Kuffel EE,Frongillo EA,Haas JD,Bassett DR,Validity of accelerometry during freeliving activity [abstract]Med Sci Sports ExercYear: 200941S129  
Orendurff MS,Schoen JA,Bernatz GC,Segal AD,Klute GK,How humans walk: Bout duration, steps per bout, and rest durationJ Rehabil Res DevYear: 200845710778910.1682/JRRD.2007.11.019719165696  
John D,Tyo B,Bassett DR,Comparison of four actigraph accelerometers during walking and runningMed Sci Sports ExercYear: 20104223687410.1249/MSS.0b013e3181b3af4919927022 
Figures
Tables
Description of the differences between the 2006 Crouter 2Regression Model (2006 C2RM) and Refined Crouter 2Regression Model (Refined C2RM)
Model  Inactivity Threshold  Determination of Variability  Determination of CV**  If CV ≤10%  If CV > 10% 

2006 C2RM  50 counts min^{1}  six consecutive 10s epochs  CV among 6 consecutive 10s epochs  Walk/run equation  Intermittent lifestyle equation 


Refined C2RM  8 counts per 10 s  Examines all combinations of surrounding five 10s epochs*  Lowest CV out of all possible combinations  Walk/run equation  Intermittent lifestyle equation 
*Examination includes 10s epoch of interest and five before, 10s epoch of interest and four epochs before and one after, etc.
**CV: coefficient of variation
Energy expenditure for the Cosmed K4b^{2}, 2006 Crouter 2Regression Model (2006 C2RM), and Refined Crouter 2Regression Model (Refined C2RM) for each walking condition
Condition  Cosmed K4b^{2}  2006 C2RM  Refined C2RM 

All Conditions 0s 
3.6 (0.7) 3.7 (0.9) 
4.0 (0.5)* 3.8 (0.9) 
3.5 (0.5) 3.5 (0.5) 
20s  3.3 (0.7)  4.1 (0.9)*  3.4 (0.5) 
40s  3.6 (1.0)  4.0 (0.8)*  3.5 (0.6) 
*Significantly different from measured kcal kg^{1 }hr^{1 }and refined C2RM (P < 0.02).
Energy expenditure expressed as kcal kg^{1 }hr^{1 }(Mean (SD)).
Article Categories:

Previous Document: Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems.
Next Document: Wholegenome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in ...