Document Detail


Use of varying constraints in optimal 3-D graph search for segmentation of macular optical coherence tomography images.
MedLine Citation:
PMID:  18051065     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
An optimal 3-D graph search approach designed for simultaneous multiple surface detection is extended to allow for varying smoothness and surface interaction constraints instead of the traditionally used constant constraints. We apply the method to the intraretinal layer segmentation of 24 3-D optical coherence tomography (OCT) images, learning the constraints from examples in a leave-one-subject-out fashion. Introducing the varying constraints decreased the mean unsigned border positioning errors (mean error of 7.3 +/- 3.7 microm using varying constraints compared to 8.3 +/- 4.9 microm using constant constraints and 8.2 +/- 3.5 microm for the inter-observer variability).
Authors:
Mona Haeker; Michael D Abràmoff; Xiaodong Wu; Randy Kardon; Milan Sonka
Related Documents :
16329065 - Topographic angiography and optical coherence tomography: a correlation of imaging char...
20022595 - Vascular intersection detection in retina fundus images using a new hybrid approach.
20890245 - Use of fundus autofluorescence images to predict geographic atrophy progression.
11568985 - Real-time optical coherence tomography for minimally invasive imaging of prostate ablat...
1863965 - Evaluation of the densitometric method of ejection fraction by direct digital subtracti...
17153945 - Blind deconvolution using a variational approach to parameter, image, and blur estimation.
Publication Detail:
Type:  Evaluation Studies; Journal Article    
Journal Detail:
Title:  Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention     Volume:  10     ISSN:  -     ISO Abbreviation:  Med Image Comput Comput Assist Interv     Publication Date:  2007  
Date Detail:
Created Date:  2007-12-04     Completed Date:  2008-01-03     Revised Date:  2009-12-11    
Medline Journal Info:
Nlm Unique ID:  101249582     Medline TA:  Med Image Comput Comput Assist Interv     Country:  Germany    
Other Details:
Languages:  eng     Pagination:  244-51     Citation Subset:  IM    
Affiliation:
Department of Electrical & Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA. mona-haeker@uiowa.edu
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Algorithms*
Artificial Intelligence
Humans
Image Enhancement / methods
Image Interpretation, Computer-Assisted / methods*
Imaging, Three-Dimensional / methods
Macula Lutea / pathology*
Macular Degeneration / etiology,  pathology*
Ophthalmoscopy / methods*
Optic Neuropathy, Ischemic / complications,  pathology*
Pattern Recognition, Automated / methods
Reproducibility of Results
Sensitivity and Specificity
Tomography, Optical Coherence / methods*

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI.
Next Document:  Automatic segmentation of bladder and prostate using coupled 3D deformable models.