Document Detail


Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes.
MedLine Citation:
PMID:  23332322     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Carbon nanotubes (CNTs) have shown great potential for biological and medical applications because of their intrinsic unique properties. However, applications of CNTs have been severely restricted by their super-hydrophobicity and easy aggregation in aqueous medium, which are related to cytotoxicity and other negative cellular effects. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized with collagen (collagen-SWCNTs). The collagen-SWCNTs retained the inherent properties of SWCNTs and the suspension solution was stable for months. The cellular effects, uptake and intracellular distribution of the collagen-SWCNTs were investigated by using them for culture of bovine articular chondrocytes (BACs). The collagen-SWCNTs showed no obvious negative cellular effects and high amount of SWCNTs were internalized by cells. The internalized collagen-SWCNTs were distributed in the perinuclear region and retained in the cells for more than one week. Adsorption of SWCNTs by extracellular matrix (ECM) was shown to be an important step for cellular uptake of SWCNTs. The high stability, easy cellular uptake and long retention in cells of the collagen-SWCNTs will facilitate the biomedical and biotechnological applications of SWCNTs.
Authors:
Hongli Mao; Naoki Kawazoe; Guoping Chen
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-16
Journal Detail:
Title:  Biomaterials     Volume:  -     ISSN:  1878-5905     ISO Abbreviation:  Biomaterials     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8100316     Medline TA:  Biomaterials     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2013 Elsevier Ltd. All rights reserved.
Affiliation:
Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nan...
Next Document:  Child abuse and epigenetic mechanisms of disease risk.