Document Detail

Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs.
Jump to Full Text
MedLine Citation:
PMID:  23286328     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Loss of a sensory input causes the hypersensitivity in other modalities. In addition to cross-modal plasticity, the sensory cortices without receiving inputs undergo the plastic changes. It is not clear how the different types of neurons and synapses in the sensory cortex coordinately change after input deficits in order to prevent loss of their functions and to be used for other modalities. We studied this subject in the barrel cortices from whiskers-trimmed mice vs. controls. After whisker trimming for a week, the intrinsic properties of pyramidal neurons and the transmission of excitatory synapses were upregulated in the barrel cortex, but inhibitory neurons and GABAergic synapses were downregulated. The morphological analyses indicated that the number of processes and spines in pyramidal neurons increased, whereas the processes of GABAergic neurons decreased in the barrel cortex. The upregulation of excitatory neurons and the downregulation of inhibitory neurons boost the activity of network neurons in the barrel cortex to be high levels, which prevent the loss of their functions and enhances their sensitivity to sensory inputs. These changes may prepare for attracting the innervations from sensory cortices and/or peripheral nerves for other modalities during cross-modal plasticity.
Authors:
Guanjun Zhang; Zilong Gao; Sudong Guan; Yan Zhu; Jin-Hui Wang
Related Documents :
10636938 - Effects of spike timing on winner-take-all competition in model cortical circuits.
20562318 - Sex- and brain size-related small-world structural cortical networks in young adults: a...
11102638 - The involvement of the neuronal golgi apparatus and trans-golgi network in the human ol...
20426078 - Tractography-based parcellation of the cortex using a spatially-informed dimension redu...
15465578 - Motor cortical excitability and clinical response to rtms in depression.
6277138 - Brindled mottled mouse: morphological changes of brain and visceral organs in hemizygou...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2013-01-03
Journal Detail:
Title:  Molecular brain     Volume:  6     ISSN:  1756-6606     ISO Abbreviation:  Mol Brain     Publication Date:  2013  
Date Detail:
Created Date:  2013-01-21     Completed Date:  2013-07-10     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  101468876     Medline TA:  Mol Brain     Country:  England    
Other Details:
Languages:  eng     Pagination:  2     Citation Subset:  IM    
Affiliation:
Department of Physiology, Bengbu Medical College, Bengbu, Anhui Province 233000, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Action Potentials / physiology
Animals
Dendrites / physiology
Down-Regulation*
GABAergic Neurons / metabolism
Mice
Mice, Inbred C57BL
Neural Inhibition / physiology*
Neurons / physiology*
Pyramidal Cells / metabolism
Somatosensory Cortex / physiology*
Synapses / metabolism
Up-Regulation*
Vibrissae / innervation*,  metabolism*
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Mol Brain
Journal ID (iso-abbrev): Mol Brain
ISSN: 1756-6606
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2013 Zhang et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 3 Month: 12 Year: 2012
Accepted Day: 28 Month: 12 Year: 2012
collection publication date: Year: 2013
Electronic publication date: Day: 3 Month: 1 Year: 2013
Volume: 6First Page: 2 Last Page: 2
PubMed Id: 23286328
ID: 3548736
Publisher Id: 1756-6606-6-2
DOI: 10.1186/1756-6606-6-2

Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs
Guanjun Zhang1 Email: 15212120916@163.com
Zilong Gao23 Email: 2010ibpzilonggao@gmail.com
Sudong Guan1 Email: sdguan@yahoo.com.cn
Yan Zhu1 Email: yanzhu@bbmc.edu.an
Jin-Hui Wang123 Email: jhw@sun5.ibp.ac.cn
1Department of Physiology, Bengbu Medical College, Bengbu, Anhui Province 233000, China
2State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
3University of Chinese Academy of Sciences, Beijing 100049, China

Introduction

Behavioral experiences modify neuronal function and rewire neuronal circuits to change the brain structure and function, i.e., experience-dependent neural plasticity [1-8]. Despite its critical importance in developmental period [9], the experience-dependent neural plasticity may occur in the adulthood after removing the stabilized processes and shifting the excitation-inhibition balance [10-15]. The experience-dependent neuronal plasticity is believed to play important roles in the memory formation [16-21] and the behavioral rehabilitation [3,6]. In terms of the molecular mechanism, long-lasting neuronal activities in various experiences triggers the cellular nuclei to transcript certain genes and the cytoplasm to express the proteins relevant to the plasticity at the neurons and synapses through the diversified arrays [7,22,23]. How the different types of the neurons and synapses rewire their connections and reset their functions, i.e., cell-specific changes in the experience-dependent neural plasticity, remains an open question to be studied [24].

In terms of the cellular mechanism underlying experience-dependent neural plasticity, the model of whisker experiences has been used without organ injury. In these studies, trimming whiskers led to the following changes in the barrel cortex, such as alternations in dynamics of excitatory synapses [25,26], pathway-specific synaptic plasticity [27-30], dendritic reorganizations [31,32], new spine generation on dendrites [33,34], zinc-containing neural circuit reorganization [35,36], and downregulation in cortical responses [37,38]. These results indicate the crucial roles of synaptic plasticity and circuit rewire in experience-dependent neural plasticity. It remains unclear how the intrinsic properties at the different types of neurons, the signal transmission at the synapses and the morphology of their subcellular compartments in the barrel cortices are coordinately regulated in response to changing sensory experience.

We have investigated this subject in the barrel cortices from whisker-trimmed mice and controls, in which pyramidal neurons were genetically labeled by yellow fluorescent protein and GABAergic cells were labeled by green one. We analyzed the capability of these neurons to convert excitatory inputs into digital spikes and the intrinsic properties mediated by voltage-gated sodium channels (VGSC). We also analyzed the transmissions of glutamatergic and GABAergic synapses. In terms of their morphology, we analyzed their dendritic structure and spines. Our results indicate that the differentiated regulations in the excitatory and inhibitory units as well as the coordinated change in cellular function and morphology are associated with loss of whisker inputs.


Results

In studying the roles of barrel cortical excitatory and inhibitory neurons in experience-dependent neural plasticity, we divided mice into the groups of control and whisker trimming, whose whiskers were either intact or completely trimmed on the right side. The neurons were genetically labeled by fluorescent proteins, yellow for pyramidal cells and green for GABAergic cells (Figure 1). Active intrinsic properties were evaluated by spiking ability and threshold potentials. The ability of these neurons to receive inputs was estimated by analyzing synaptic transmission and their spines. The synapse functions were recorded by spontaneous postsynaptic currents on pyramidal neurons. Processes and spines were accounted under laser scanning confocal microscope. It is noteworthy that these functional and morphological studies were conducted on the left side of barrel cortices since whiskers were trimmed on the right side.

The excitatory units in the barrel cortex are upregulated after loss of whisker inputs

Excitatory units in our study are pyramidal neurons and excitatory synapses in the barrel cortices. Their functions and processes/spines’ morphology are analyzed. In terms of the active intrinsic properties, Figure 2 illustrates the ability to convert excitatory inputs into digital spikes measured by inter-spike interval (ISI). These neurons after loss of whisker inputs appear to have higher ability to encode spikes (dark-blue trace in Figure 2A), compared with controls (dark-red). Figure 2B shows ISIs in pyramidal cells from whisker trimming (WT, open symbols) and control mice (filled). ISI values for spikes 1~2 up to 4~5 are 15.21±1.1, 27.16±2.6, 35.32±2 and 39.61±1.8 in the WT neurons (n=15); and 24.15±2.4, 34.9±2.2, 40.78±1.9 and 44.3±2.3 in the controls (n=16). ISI values for corresponding spikes in these two sources of neurons are statistically different (p<0.01). Therefore, the loss of whisker inputs enhances the capability of pyramidal neurons to convert excitatory inputs into digital spikes.

Figure 2C illustrates VGSC-mediated threshold potentials (Vts) at pyramidal neurons. Vts values for spikes 1 to 5 are 30.52±1.56, 40.19±1.1, 40.9±1.9, 39.62±1.88 and 39.56±1.39 in the WT neurons (open symbols; n=15), and are 35.52±1.56, 45.1±2, 44.61±1.68, 45.75±1.97 and 46.19±2.19 in the controls (filled, n=16). Vts values for corresponding spikes are significantly lower in the WT neurons than in the controls (p<0.01). Thus, a loss of whisker inputs reduces the threshold for firing spikes at barrel cortical pyramidal neurons.

Excitatory synaptic transmission was estimated by recording spontaneous excitatory postsynaptic currents (sEPSC) on pyramidal neurons. Figure 3 illustrates the effect of loss of whisker inputs on excitatory synaptic transmission. sEPSCs after whisker trimming appear higher (Figure 3B), compared to controls (Figure 3A). Figure 3C shows cumulative probability vs. sEPSC amplitudes from the WT neurons (open symbols, n=11) and the controls (filled, n=12). Figure 3D shows cumulative probability vs. inter-sEPSC intervals from the WT neurons (open symbols, n=11) and the controls (filled, n=12). Statistical analysis indicates that sEPSC amplitudes and frequencies (1/inter-sEPSC interval) are higher in the WT neurons than in the controls. Thus, the loss of whisker inputs enhances excitatory synaptic transmission including glutamate release probability and receptor responsiveness on the pyramidal neurons of the barrel cortices.

In terms of morphological changes of barrel cortical pyramidal neurons, we analyzed the densities of processes and spines, which reflected their capacity to receive the excitatory inputs. The processes and spines on pyramidal neurons were accounted from the images photographed by confocal microscope. Figure 4 shows the processes on apical and basal dendrites. The number of processes appears to change on the dendrites of pyramidal neurons from whisker-trimmed mice (bottom panels in Figure 4A), compared with those from controls (tops in Figure 4A). Statistical analyses in Figure 4B~D illustrate the number of processes on apical dendrites, primary and secondary processes on somata (basal dendrites) from the WT mice and the controls. The processes per 100 μm on apical dendrites are 6.8±0.54 in the WT neurons and 8.24±0.33 in the controls (Figure 4B; p<0.05, n=18). The primary processes of basal dendrites are 8.33±0.27 in the WT neurons and 7.46±0.24 in the controls (Figure 4C; p<0.05, n=18). The secondary processes from the basal dendrites are 15.78±0.54 in the WT neurons and 13.46±0.53 in the controls (Figure 4D; p<0.01, n=18). Thus, the area to receive synaptic inputs increases on the basal dendrites of pyramidal neurons, but decreases on their apical dendrites, after loss of whisker inputs.

Figure 5 illustrates the density of spines on apical and basal dendrites. The number of spines appears to increase on the dendrites of pyramidal neurons from the WT mice (bottom panels in Figure 5A), compared to those from the controls (tops in Figure 5A). Statistical analyses in Figure 5B-C show the number of spines on the apical and basal dendrites of pyramidal cells from the WT mice and the controls. Spines per 10 μm on apical dendrites are 9.1±0.16 in the WT neurons and 8.1±0.15 in the controls (p<0.001, n=13). Spines per 10 μm on basal dendrites are 7.15±0.29 in the WT neurons and 6.81±0.31 in the controls (p=0.35, n=12). Therefore, the sites for receiving excitatory presynaptic inputs increase on the apical dendrites of pyramidal neurons after loss of whisker inputs.

In summary, loss of whisker inputs upregulates the functions of excitatory neurons and synapses as well as the areas and sites of receiving synaptic inputs in the barrel cortices. We subsequently studied the influence of loss of whisker inputs on the GABAergic inhibitory neurons and synapses in the barrel cortices.

The inhibitory units in the barrel cortex are downregulated after loss of whisker inputs

Inhibitory units in our study included GABAergic neurons and their output synapses in the barrel cortices. Inter-spike intervals and threshold potential were analyzed to indicate active intrinsic properties. Inhibitory synaptic transmission was evaluated by recording spontaneous inhibitory postsynaptic currents (sIPSC) on pyramidal neurons. The processes on GABAergic neurons were accounted from the images taken by a confocal microscope.

Figure 6 illustrates the capability of converting excitatory input into digital spikes measured by inter-spike interval (ISI). These GABAergic neurons after loss of whisker inputs appear to have lower ability to encode spikes (dark-blue trace in Figure 6A), compared to the controls (dark-red). ISI values for spikes 1~2 up to 4~5 are 17.43±0.64, 20.41±0.7, 22.37±0.67 and 24.77±0.97 in the WT neurons (open symbols in Figure 6B, n=15); and 14.88±0.98, 17.2±1, 18.46±1.0 and 19.3±0.99 in the controls (filled, n=16). ISI values for corresponding spikes in two sources of neurons are statistically different (p<0.01). Therefore, the loss of whisker inputs attenuates the capability of GABAergic neurons to convert excitatory inputs intro the digital spikes.

Figure 6C illustrates VGSC-mediated threshold potentials (Vts) at GABAergic neurons. Vts values for spikes 1 up to 5 are 33.1±0.91, 38.86±0.78, 40.1±0.89, 40.52±0.91 and 40.75±1.1 in the WT neurons (open symbols; n=15), and are 30.69±1.27, 34.15±1.26, 34.88±1.22, 36.23±1.72 and 36.88±1.56 in the controls (filled, n=16). Vts values for corresponding spikes are statistically higher in the WT neurons than the controls (p<0.01). Thus, loss of whisker inputs attenuates the active intrinsic properties of inhibitory neurons in the barrel cortices.

Figure 7 illustrates the effects of loss of whisker inputs on inhibitory synaptic transmission. sIPSCs after whisker trimming appear to be lower (Figure 7B), compared to the controls (Figure 7A). Figure 7C shows cumulative probability vs. sIPSC amplitudes from the WT neurons (open symbols, n=11) and the controls (filled, n=12). Figure 7D shows cumulative probability vs. inter-sIPSC intervals from the WT neurons (open symbols, n=11) and the controls (filled, n=12). Statistical analysis indicates that sIPSC amplitudes and frequencies (1/inter-sIPSC interval) are lower in the WT neurons than in the controls. Therefore, loss of whisker inputs attenuates the inhibitory synaptic transmission including GABA release probability and receptor responsiveness in the barrel cortices.

In terms of the morphological changes in the barrel cortical GABAergic neurons, we analyzed the densities of processes, which reflected the volume of receiving inhibitory inputs. The number of processes appears to decrease on GABAergic neurons from the WT mice (right panel in Figure 8A), compared with those from the controls (left in 8A). Statistical analyses in Figure 8B-C illustrate the number of primary and secondary processes on somata from the WT mice and controls. Primary processes are 5.27±0.25 in the WT neurons and 6.12±0.23 in the controls (p<0.05, n=15). Secondary processes are 10.13±0.5 in the WT neurons and 11.39±0.59 in the controls (p=0.2). Therefore, the main processes for receiving presynaptic inputs decrease on GABAergic neurons after loss of whisker inputs.


Discussion

In whisker-trimmed mice versus controls, we analyzed the changes of excitatory and inhibitory neurons in the barrel cortices. After loss of whisker inputs for a week, the functions of excitatory neurons and synapses as well as the sites of receiving excitatory inputs are upregulated (Figures 2 and 5). On the other hand, the functions of GABAergic neurons and synapses as well as the processes of receiving synaptic inputs are downregulated (Figures 6 and 8). These changes elevate the activity levels of network neurons in the barrel cortices, which may prevent a loss of their functions due to idle whisker inputs and increase their sensitivity to sensory inputs, as well as be ready to attracting the innervations from other sensory cortices and/or peripheral nerves for the remained modalities during the cross-modal sensory plasticity [39-42].

In terms of physiological impacts for bidirectional changes in pyramidal neurons vs. GABAergic neurons from the barrel cortex after the loss of whisker inputs, the upregulation of excitatory units and the downregulation of inhibitory units will reset the balance of excitation versus inhibition toward the end of excitation. In addition to reducing the threshold to boost neuronal networks, this upregulated activity may maintain the sensitivity of pyramidal neurons to weak input, so that their functions are not lost. Moreover, their upregulated activities may attract the exogenous inputs to innervate the barrel cortices, such as from piriform cortex [42], for cross-modal sensory plasticity and rehabilitation. Upregulations in the frequency of excitatory synaptic events (Figure 3) and the sites of receiving synaptic inputs (Figures 4 and 5) grant the establishment of new excitatory innervations in the barrel cortices.

After a loss of whisker inputs, the capabilities of firing spikes and transmitting excitatory synaptic signals increase on pyramidal neurons in the barrel cortex (Figures 2 and 3). The capabilities of firing spikes on GABAergic cells and executing their synaptic outputs decrease (Figures 6 and 7). That is, the intrinsic property and synaptic transmission change coordinately for homogenous functions in experience-dependent neural plasticity. This coordinate change is also seen synaptic transmission and input structures, since excitatory synaptic events and dendritic spines increase in a loss of whisker inputs (Figures 3 and 5). The coordination in the neurons and synapses is critical for them to work in a common purpose, i.e., the increase of neuronal sensitivity to inputs boost the activity of neuronal networks for cross-modal sensory plasticity [41,42]. In addition, we observed the bidirectional change between processes and their spines in apical and basal dendrites (Figures 4 and 5). This homeostasis in process density and spines saves the neuronal resources, a process similar to homeostasis by coordinating subcellular compartments and single molecules [43,44]. Therefore, the coordination and homeostasis among the neurons and synapses are present in vivo, based on our studies, which expends this knowledge obtained from the studies in vitro[45].

In terms of the mechanism underlying the upregulation of excitatory units and the downregulation of inhibitory units after loss of sensory inputs in the barrel cortices, we assume that they use homeostatic mechanisms, which are seen in the studies in vitro. Neuronal activities undergo homeostatic upregulation after functional deficits by pharmacological or genetic manipulations [45,46]. For instance, neuronal excitability rises when removing the treatment of TTX. The density of AMPA-type glutamate receptors is high when using CNQX. Neuronal excitability shows low and then recovery when potassium channels are over-expressed [47-49]. Such slowly developed homeostasis plays a role in functional compensation. The molecular mechanisms underlying neural homeostasis include glutamate/GABA receptors, voltage-gated sodium channels, brain-derived neurotrophic factors and α/β CaM-kinases [50-56]. It remains to be investigated how these molecules are coordinately initiated in vivo for the plasticity of the barrel cortices after loss of whisker inputs.

Excitatory synaptic transmission and dendritic spines increase on pyramidal neurons of the barrel cortex after loss of whisker inputs. As the strength of synaptic activities from the thalamus input deceases due to a lack of information from whisker-trigeminal ganglion-thalamus afferent pathway, these increased events and input-targeting units at excitatory synapses may be from cerebral cortices for other modalities, which is supported by our previous study [42]. This point brings insight into the concept that the neurons are never to be the functional silent units under the physiological condition. After loss of excitatory synaptic inputs, the neurons call up through the homeostatic mechanism, attract synaptic inputs from other cortical areas and execute new functions, e.g., cross-modal plasticity for sensory compensation. How the substitution of other cortical inputs to thalamus inputs is temporally controlled by the molecular events remains to be studied.

Previous studies in the barrel cortices after trimming whiskers indicated the changes in synaptic transmission [25,26], synaptic plasticity [27-30], dendritic reo rganization [31,32], spine generation [33,34] and zinc-containing neural circuit reorganization [35,36]. These data indicate the important roles of synaptic plasticity and circuit rewire in experience-dependent neural plasticity. By labeling different neurons as well as studying their functions and morphology, we are able to see the coordination and homeostasis among the different types of neurons and synapses in the barrel cortices after experience-dependent neural plasticity. Our study brings new information for this subject.

In summary, we have investigated experience-dependent plasticity in the barrel cortices after loss of whisker inputs. The upregulation of excitatory neurons and synapses as well as the downregulation of inhibitory neurons and synapses are associated with the loss of sensory inputs. The upregulated activities of network neurons, after loss of their original sensory inputs, will prevent the loss of their functions and attract the inputs from other cortical areas and/or peripheral nerves for cross-modal compensation.


Methods and materials

The entire procedures were approved by Institutional Animal Care Unit Committee (IACUC) in the Administration Office of Laboratory Animals at Beijing China (B10831).

A mouse model of removing whisker stimulus

In order to analyze the activities of barrel cortical neurons and synapses relevant to the changes in whiskers’ experience in cell-specific manner, we need the mice whose cortical neurons are labeled by different markers. We cross-matched the mice from strains of C57(Thy1YFP)BL/6N (from He in IBP-CAS) and FVB-Tg(GADGFP)4570Swn/J (Jackson Lab, USA). Pyramidal neurons in C57 mice were genetically labeled by yellow fluorescent protein (YFP), in which the promoter was Thy1 on the upstream of YFP. GABAergic neurons in FVB mice were labeled by green fluorescent protein (GFP), in which the promoter was GAD on the upstream of GFP. Such cross-matched mice possess YFP-labeled pyramidal neurons and GFP-labeled GABAergic neurons in cerebral cortices (Figure 1). The mice in postnatal days 7 were divided into two groups that were whisker trimming on right side and control (intact whiskers), respectively. The whisker trimming was given every day for one week with no trimming the furs in the face of mice. During the operation, the mice were placed in home-made cages, in which their running and motion were restricted, but the extensions of their bodies and arms were allowed. The cares were taken including no stress and circadian disturbance to the mice. In addition, the mice with normal whisking and symmetric whiskers were selected for our experiments.

Brain slices and neurons

The cortical slices (400 μm) were prepared from the mice with whisker trimming and control. They were anesthetized by inhaling isoflurane and decapitated by guillotine. Slices were cut with a Vibratome in oxygenated (95% O2 and 5% CO2) artificial cerebrospinal fluid (ACSF), in which the concentrations (mM) of different elements were 124 NaCl, 3 KCl, 1.2 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, 4 MgSO4, 10 dextrose, and 5 HEPES, pH 7.35 at 4°C. The slices were held in the oxygenated ACSF (124 NaCl, 3 KCl, 1.2 NaH2PO4, 26 NaHCO3, 2.4 CaCl2, 1.3 MgSO4, 10 dextrose, and 5 HEPES, pH 7.35) at 25°C for 2 hours. A slice was transferred to a submersion chamber (Warner RC-26G) that was perfused with the ACSF oxygenated at 31°C for whole-cell recording [41,42,57-60]. Chemical reagents were from Sigma.

The neurons in the barrel cortical slices are showed GFP-labeling for GABAergic cells and YFP-labeling for pyramidal cells. These neurons in layers II-III were selected for whole-cell recordings under DIC-fluorescent microscope (Nikon FN-E600, Japan), in which the excitation wavelength was 488 nm. GABAergic neurons showed fast spiking without the adaptation in spike amplitude and frequency, typical properties for interneurons [41,61-64]. Cortical pyramidal neurons demonstrated regular spikes with the adaptation in their amplitudes and frequency.

Whole-cell recording and neuronal functions

Cortical neurons were recorded by an MultiClamp-700B amplifier under voltage-clamp for their synaptic activity and current-clamp for their active intrinsic properties. The electrical signals were inputted into pClamp-10 (Axon Instrument Inc, USA) for the data acquisition and analysis. The output bandwidth in this amplifier was 3 kHz. Pipette solution for studying excitatory events included (mM) 150 K-gluconate, 5 NaCl, 5 HEPES, 0.4 EGTA, 4 Mg-ATP, 0.5 Tris-GTP, and 5 phosphocreatine (pH 7.35; [65]. The solution to record inhibitory synapses contained (mM) 130 K-gluconate, 20 KCl, 5 NaCl, 5 HEPES, 0.5 EGTA, 4 Mg-ATP, 0.5 Tris–GTP and 5 phosphocreatine [66]. These pipette solutions were freshly made and filtered (0.1 μm). The osmolarity was 295~305 mOsmol and pipette resistance was 5~6 MΩ.

The functions of GABAergic neurons were assessed based on their active intrinsic properties and inhibitory outputs [67]. The functional status of their inhibitory outputs were evaluated by recording spontaneous IPSCs (sIPSC) under voltage-clamp on pyramidal neurons in the presence of 10 μM 6-Cyano-7-nitroquinoxaline-2,3-(1H,4H)-dione (CNQX) and 40 μM D-amino-5-phosphonovanolenic acid (D-AP5) in ACSF to block ionotropic glutamate receptors and to isolate IPSCs [66]. 10 μM bicuculline was washed into the slices at the end of experiments to test whether synaptic responses were mediated by GABAAR, which did block sIPSCs in our experiments. The series and input resistances for all of the neurons were monitored by injecting hyperpolarization pulses (5 mV/50 ms), and calculated by voltage pulses versus instantaneous and steady-state currents. It is noteworthy that the pipette solution with the high concentration of chloride ions makes the reversal potential to be −42 mV. sIPSCs are inward when the membrane holding potential at −65 mV [66].

The functions of pyramidal neurons were assessed based on their active intrinsic properties and excitatory outputs [67]. The functional status of their excitatory outputs were evaluated by recording spontaneous EPSCs (sEPSC) under voltage-clamp on cortical pyramidal cells in presence of 10 μM bicuculline in ACSF to block ionotropic GABA receptors and isolate EPSCs. 10 μM CNQX and 40 μM DAP-5 were added into ACSF perfused into the slices at the end of experiments to test whether synaptic responses were mediated by GluR, which did block sEPSCs in our study. In addition, series and input resistances for all of these neurons were monitored by injecting hyperpolarization pulses (5 mV/50 ms), and calculated by voltage pulses vs. instantaneous and steady-state currents.

Action potentials at these cortical neurons were induced by injecting depolarization pulses, whose intensity and duration were changed based on the aim of experiments. The ability to convert excitatory inputs into sequential spikes was evaluated by inter-spike intervals (ISI) when depolarization pulses (200 ms in the duration and threshold for 10 ms pulse-induced spike for the intensity) were given [68]. Neuronal intrinsic properties in our study included spike threshold potential (Vts) and absolute refractory period (ARP). Vts were the voltages of spike-onsets [43,63,69-71].

Data were analyzed if the recorded neurons had the resting membrane potentials negatively more than −60 mV, and action potential amplitudes more than 90 mV. The criteria for the acceptance of each experiment also included less than 5% changes in resting membrane potential, spike magnitude, and input resistance throughout each experiment. Input resistance was monitored by measuring cellular responses to hyperpolarization pulse at the same values as the depolarization that evoked action potentials. To estimate the effect of whisker trimming on neuronal spikes and synaptic transmission, we measured sEPSC, sIPSC ISI and Vts in the neurons from mice of control and whisker trimming. The differences in sEPSC, sIPSC, ISI and Vts were presented as mean±SE. The comparisons of these data were done by t-test.

The morphological studies of GABAergic neurons and pyramidal neuons in barrel cortices

The mice in one week after whisker trimming and controls were anesthetized by the intraperitoneal injection of sodium pentobarbital, and were perfused by 4% paraformaldehyde in 0.1 M phosphate buffer solution (PBS) from left ventricle/aorta until the body was rigid. The brains were quickly isolated and fixed in 4% paraformaldehyde PBS for additional 24 hours. Cortical tissues were sliced in the cross section of barrel cortex at 60 μm by a Vibratome. Sections were washed by PBS for 3 times, air-dried and cover-slipped. The images in the structures of YFP-labeled pyramidal neurons and GFP-GABAergic cells in the cross-sections of barrel cortices were photographed under a laser scanning confocal microscopy (Olympus FV-1000, Japan), in which their fluorescent markers were deconvoluted by 510 nm and 540 nm [72].

The structures of these neurons were analyzed by a commercialized software MetaMorph in Meta Imaging Series (ver. 6.1, Universal Imaging Cooperation in Molecular Device). As the brain tissues were sliced in series sections, the counting and analysis in cell structures were able to be done at least from two sections for each of barrels. The analyzed sections were chosen in a manner of one section from every two in order to prevent the influence of cells that crossed the neighboring sections on the analysis. In the analyses of dendrites, the primary processes (branches from somata) and secondary ones (branches from primaries) of pyramidal and GABAergic neurons were measured in each of barrel sections. In pyramidal neurons, the analyses of their dendrites included the apical and basal dendrites [41]. The spines were the protrusion extended from on the dendrites, which were accounted as spines per 10 μm.


Competing interests

The authors declare that they have no competing interests.


Authors’ contributions

GZ and ZG carried out the experiments and data analyses. JHW contributed to project design and paper writing. All authors read and approved the final manuscript.


Acknowledgement

We thank Dr. SG He for C57(Thy1YFP)BL/6N mice. GJ Zhang and ZL Gao contribute to the experiments and data analyses. JH Wang contributes to project design and paper writing. This study is granted by National Basic Research Program (2013CB531304, 2011CB504405) and Natural Science Foundation China (30990261, 81171033) to JHW.


References
Cruikshank SJ,Weinberger NM,Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical reviewBrain Res Brain Res RevYear: 1996221912288957560
Dulcis D,Spitzer NC,Reserve pool neuron transmitter respecification: Novel neuroplasticityDev NeurobiolYear: 20117246547421595049
Fox K,Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortexPhilos Trans R Soc Lond B Biol SciYear: 200936436938110.1098/rstb.2008.025219038777
Katz LC,Shatz CJ,Synaptic activity and the construction of cortical circuitsScienceYear: 19962741133113810.1126/science.274.5290.11338895456
Kerr AL,Cheng SY,Jones TA,Experience-dependent neural plasticity in the adult damaged brainJ Commun DisordYear: 20114453854821620413
Kleim JA,Jones TA,Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damageJ Speech Lang Hear ResYear: 200851S225S23910.1044/1092-4388(2008/018)18230848
Leslie JH,Nedivi E,Activity-regulated genes as mediators of neural circuit plasticityProg NeurobiolYear: 20119422323710.1016/j.pneurobio.2011.05.00221601615
Singer W,Development and plasticity of cortical processing architecturesScienceYear: 199527075876410.1126/science.270.5237.7587481762
Rogers LJ,The molecular neurobiology of early learning, development, and sensitive periods, with emphasis on the avian brainMol NeurobiolYear: 1993716118710.1007/BF027691747910026
Foscarin S,Rossi F,Carulli D,Influence of the environment on adult CNS plasticity and repairCell Tissue ResYear: 201234916116710.1007/s00441-011-1293-422143260
Glasper ER,Schoenfeld TJ,Gould E,Adult neurogenesis: optimizing hippocampal function to suit the environmentBehav Brain ResYear: 201122738038321624398
Karmarkar UR,Dan Y,Experience-dependent plasticity in adult visual cortexNeuronYear: 20065257758510.1016/j.neuron.2006.11.00117114043
O'Leary DD,Ruff NL,Dyck RH,Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systemsCurr Opin NeurobiolYear: 1994453554410.1016/0959-4388(94)90054-X7812142
Shideler KK,Yan J,M1 muscarinic receptor for the development of auditory cortical functionMol BrainYear: 201032910.1186/1756-6606-3-2920964868
Vida MD,Vingilis-Jaremko L,Butler BE,Gibson LC,Monteiro S,The reorganized brain: how treatment strategies for stroke and amblyopia can inform our knowledge of plasticity throughout the lifespanDev PsychobiolYear: 20125435736810.1002/dev.2062522415923
Byrne JH,Cellular analysis of associative learningPhysiol RevYear: 1987673294393550838
Descalzi G,Li XY,Chen T,Mercaldo V,Koga K,Zhuo M,Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learningMol BrainYear: 20125610.1186/1756-6606-5-622304729
Kandel ER,The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEBMol BrainYear: 201251410.1186/1756-6606-5-1422583753
Lansner A,Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulationsTrends NeurosciYear: 20093217818610.1016/j.tins.2008.12.00219187979
Mayes A,Montaldi D,Migo E,Associative memory and the medial temporal lobesTrends Cogn SciYear: 20071112613510.1016/j.tics.2006.12.00317270487
Suzuki WA,Associative learning signals in the brainProg Brain ResYear: 200816930532018394483
Padamsey Z,Emptage NJ,Imaging synaptic plasticityMol BrainYear: 201143610.1186/1756-6606-4-3621958593
Pulvirenti L,Neural plasticity and memory: towards an integrated viewFunct NeurolYear: 199274814901338432
Holtmaat A,Svoboda K,Experience-dependent structural synaptic plasticity in the mammalian brainNat Rev NeurosciYear: 20091064765810.1038/nrn269919693029
Finnerty GT,Roberts LS,Connors BW,Sensory experience modifies the short-term dynamics of neocortical synapsesNatureYear: 199940036737110.1038/2255310432115
Hardingham N,Wright N,Dachtler J,Fox K,Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKIINeuronYear: 20086086187410.1016/j.neuron.2008.10.01819081380
Clem RL,Barth A,Pathway-specific trafficking of native AMPARs by in vivo experienceNeuronYear: 20064966367010.1016/j.neuron.2006.01.01916504942
Jiao Y,Zhang C,Yanagawa Y,Sun QQ,Major effects of sensory experiences on the neocortical inhibitory circuitsJ NeurosciYear: 2006268691870110.1523/JNEUROSCI.2478-06.200616928857
Sun QQ,Zhang Z,Whisker experience modulates long-term depression in neocortical gamma-aminobutyric acidergic interneurons in barrel cortexJ Neurosci ResYear: 201189738510.1002/jnr.2253021046566
Wen JA,Barth AL,Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neuronsJ NeurosciYear: 2011314456446510.1523/JNEUROSCI.6042-10.201121430146
Lendvai B,Stern EA,Chen B,Svoboda K,Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivoNatureYear: 200040487688110.1038/3500910710786794
Rema V,Armstrong-James M,Ebner FF,Experience-dependent plasticity is impaired in adult rat barrel cortex after whiskers are unused in early postnatal lifeJ NeurosciYear: 20032335836612514235
Holtmaat A,De Paola V,Wilbrecht L,Knott GW,Imaging of experience-dependent structural plasticity in the mouse neocortex in vivoBehav Brain ResYear: 2008192202510.1016/j.bbr.2008.04.00518501438
Vees AM,Micheva KD,Beaulieu C,Descarries L,Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal ratJ Comp NeurolYear: 199840011012410.1002/(SICI)1096-9861(19981012)400:1<110::AID-CNE8>3.0.CO;2-C9762870
Brown CE,Dyck RH,Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged miceNeuroscienceYear: 200311979580110.1016/S0306-4522(03)00292-612809700
Land PW,Shamalla-Hannah L,Experience-dependent plasticity of zinc-containing cortical circuits during a critical period of postnatal developmentJ Comp NeurolYear: 2002447435610.1002/cne.1022911967894
Sachdev RN,Egli M,Stonecypher M,Wiley RG,Ebner FF,Enhancement of cortical plasticity by behavioral training in acetylcholine-depleted adult ratsJ NeurophysiolYear: 2000841971198111024090
Wallace H,Glazewski S,Liming K,Fox K,The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortexJ NeurosciYear: 2001213881389411356876
Bavelier D,Neville HJ,Cross-modal plasticity: where and how?Nat Rev NeurosciYear: 2002344345212042879
Lomber SG,Meredith MA,Kral A,Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deafNat NeurosciYear: 2010131421142710.1038/nn.265320935644
Ni H,et al. Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficitPLoS OneYear: 20105e1373610.1371/journal.pone.001373621060832
Ye B,Huang L,Gao Z,Chen P,Ni H,Guan S,Zhu Y,Wang JH,The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputsPLoS OneYear: 20127e4198610.1371/journal.pone.004198622927919
Chen N,Chen X,Wang J-H,Homeostasis established by coordination of subcellular compartment plasticity improves spike encodingJournal of Cell ScienceYear: 20081212961297110.1242/jcs.02236818697837
Ge R,Chen N,Wang JH,Real-time neuronal homeostasis by coordinating VGSC intrinsic propertiesBiochem Biophys Res CommunYear: 200938758558910.1016/j.bbrc.2009.07.06619616515
Turrigiano GG,Nelson S,Homeostatic plasticity in the developing nervous systemNat Rev NeurosciYear: 200459710710.1038/nrn132714735113
Burrone J,Murthy V,Synaptic gain control and homeostasisCurr Opin NeurobiolYear: 20031356056710.1016/j.conb.2003.09.00714630218
Desai NS,Rutherford L,Turrigiano GG,Plasticity in the intrinsic excitability of cortical pyramidal neuronsNat NeurosciYear: 1999251552010.1038/916510448215
Ramakers GJ,Corner MA,Habers AM,Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of associated cerebral cortexExp Brain ResYear: 1990791571662311692
Van Den Pol AN,Obrietan K,Belousov A,Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in cultureNeuroscienceYear: 19967465367410.1016/0306-4522(96)00153-48884763
Burrone J,O'Byrne M,Murthy VN,Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neuronsNatureYear: 200242041441810.1038/nature0124212459783
Desai NS,Rutherford LC,Turrigiano GG,BDNF regulates the intrinsic excitability of cortical neuronsLearn MemYear: 1999628429110492010
Demarque M,Spitzer NC,Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasisDev NeurobiolYear: 201172223221557513
Ehlers MD,Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome systemNat NeurosciYear: 2003623124210.1038/nn101312577062
Perez-Otano I,Ehlers MD,Homeostatic plasticity and NMDA receptor traffickingTrends NeuroscieYear: 20052822923810.1016/j.tins.2005.03.004
Spitzer NC,Borodinsky LN,Root CM,Homeostatic activity-dependent paradigm for neurotransmitter specificationCell CalciumYear: 20053741742310.1016/j.ceca.2005.01.02115820389
Thiagarajan TC,Piedras-Renteria ES,Tsien RW,Alpha- and beta-CaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strengthNeuronYear: 2002361103111410.1016/S0896-6273(02)01049-812495625
Wang J-H,Kelly PT,Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1J PhysiolYear: 200153340742210.1111/j.1469-7793.2001.0407a.x11389201
Yu J,Qian H,Chen N,Wang JH,Quantal glutamate release is essential for reliable neuronal encodings in cerebral networksPLoS OneYear: 20116e2521910.1371/journal.pone.002521921949885
Yu J,Qian H,Wang JH,Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikesMol BrainYear: 201252610.1186/1756-6606-5-2622852823
Zhang F,Liu B,Lei Z,Wang J,mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 miceMol BrainYear: 201252010.1186/1756-6606-5-2022681774
Freund TF,Buzsaki G,Interneurons of the hippocampusHippocampusYear: 199663474708915675
McKay BE,Turner RW,Physiological and morphological development of the rat cerebellar Purkinje cellJ PhysiolYear: 2005567Pt382985016002452
Wang JH,Wei J,Chen X,Yu J,Chen N,Shi J,The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encodingJ Cell SciYear: 20081212951296010.1242/jcs.02568418697836
Wang Q,Liu X,Ge R,Guan S,Zhu Y,Wang JH,The postnatal development of intrinsic properties and spike encoding at cortical GABAergic neuronsBiochem Biophys Res CommunYear: 200937870671010.1016/j.bbrc.2008.11.10419059212
Ge R,Qian H,Wang JH,Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neuronsMol BrainYear: 201141910.1186/1756-6606-4-1921549002
Wei J,Zhang M,Zhu Y,Wang JH,Ca2+−calmodulin signalling pathway upregulates GABA synaptic transmission through cytoskeleton-mediated mechanismsNeuroscienceYear: 200412763764710.1016/j.neuroscience.2004.05.05615283963
Wang J-H,Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neuronsBrain Res BullYear: 200360535810.1016/S0361-9230(03)00026-112725892
Chen N,Zhu Y,Gao X,Guan S,Wang J-H,Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neuronsBiochem Biophys Res CommunYear: 200634628128710.1016/j.bbrc.2006.05.12016756951
Chen N,Chen SL,Wu YL,Wang JH,The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordingsBiochem Biophys Res CommunYear: 200634015115710.1016/j.bbrc.2005.11.17016343428
Chen N,Chen X,Yu J,Wang J-H,After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channelsBiochem Biophys Res CommunYear: 200634693894510.1016/j.bbrc.2006.06.00316777065
Chen N,Yu J,Qian H,Ge R,Wang JH,Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neuronsPLoS OneYear: 201057e1186810.1371/journal.pone.001186820686619
Zhao J,Wang D,Wang J-H,Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequencyMolecular BrainYear: 201251211022217152

Figures

[Figure ID: F1]
Figure 1 

Whole-cell recording on barrel cortical pyramidal and GABAergic neurons that are genetically labeled by yellow and green fluorescent proteins, respectively. The morphological analyses are conducted for the processes and spines of apical and basal dendrites on pyramidal neurons as well as the processes on GABAergic neurons. Primary processes are those sprouted from somata, and secondary processes are those from the primary processes.



[Figure ID: F2]
Figure 2 

The loss of whisker inputs upregulates the capability to produce action potentials in pyramidal neurons of the barrel cortex. Sequential spikes were induced by depolarization pulses in an intensity that was a threshold for inducing a spike by 10 ms of pulse for each neuron. A) illustrates sequential spikes induced at pyramidal neurons from whisker-trimmed mouse (dark-blue trace) and control (dark-red one). B) illustrates inter-spike intervals for spike 1~2 to 4~5 in pyramidal neurons from whisker-trimmed mice (open symbols; n=15) and controls (filled; n=16, p<0.01). C) illustrates threshold potentials for spike 1~5 in pyramidal cells from whisker-trimmed mice (open symbols; n=15) and controls (filled; n=16, p<0.01).



[Figure ID: F3]
Figure 3 

A loss of whisker input upregulates the signal transmission of excitatory synapses on pyramidal neurons of the barrel cortex. The strength of excitatory synapses was evaluated by recording spontaneous excitatory postsynaptic currents (sEPSC) in presence of 10 μM bicuculline, which were blocked by 10 μM CNQX and 40 μM D-AP5. A) illustrates sEPSCs recorded on a pyramidal neuron in the barrel cortex of a control mouse. B) illustrates sEPSCs recorded on a pyramidal neuron in the barrel cortex from a whisker-trimmed mouse. Calibration bars are 15 pA/3 seconds C) illustrates cumulative probability versus sEPSC amplitudes in barrel cortical pyramidal neurons from whisker-trimmed mice (open symbols, n=11) and controls (filled, n=12). D) illustrates cumulative probability versus inter-EPSC intervals in barrel cortical pyramidal neurons from whisker-trimmed mice (open symbols, n=11) and controls (filled, n=12).



[Figure ID: F4]
Figure 4 

A loss of whisker inputs leads to plastic changes in the apical and basal dendrites of pyramidal neurons in the barrel cortices. A) Top panels show the images of apical dendrites (left) and basal dendrites (right) on pyramidal cells from mice without whisker trimming, i.e., control (Con). Bottom panels show the images of apical dendrites (left) and basal ones (right) on pyramidal neurons from mice with whisker trimming (WT). B) Statistical analysis illustrates primary processes per 100 μm on apical dendrites from whisker-trimmed mice and controls (n=18, p<0.05). C) illustrates primary processes on basal dendrites from whisker-trimmed mice and control (n=18, p<0.05). D) shows secondary processes on basal dendrites from whisker-trimmed mice and controls (n=18, p<0.01).



[Figure ID: F5]
Figure 5 

A loss of whisker inputs leads to plastic changes in the spines of pyramidal neurons in the barrel cortices. A) Top panels show the images of dendrites (left) and spines (right) on pyramidal neurons from mice of controls (Con). Bottom panels show the images of dendrites (left) and spines (right) on pyramidal neurons from mice with whisker trimming (WT). B) Statistical analysis shows spines per 10 μm on apical dendrites from whisker-trimmed mice and controls (n=13, p<0.001). C) shows spines on basal dendrites from whisker-trimmed mice and controls (n=12, p=0.35).



[Figure ID: F6]
Figure 6 

The loss of whisker inputs downregulates the capability to fire action potentials in GABAergic neurons of the barrel cortices. Sequential spikes were induced by the depolarization pulse in an intensity that was a threshold for inducing a spike by 10 ms of pulse for each neuron. A) shows sequential spikes induced at the GABAergic neurons from whisker-trimmed mouse (dark-blue trace) and control (dark-red trace). B) illustrates inter-spike intervals for spike 1~2 up to 4~5 in GABAergic neurons from whisker-trimmed mice (open symbols; n=15) and controls (filled; n=16, p<0.01). C) illustrates threshold potentials for spikes 1~5 in GABAergic neurons from whisker-trimmed mice (open symbols; n=15) and controls (filled; n=16, p<0.01).



[Figure ID: F7]
Figure 7 

The loss of whisker inputs downregulates the transmission of inhibitory synapses on pyramidal neurons of the barrel cortex. The strength of inhibitory synapses was evaluated by recording spontaneous inhibitory postsynaptic currents (sIPSC) in the presence of 10 μM CNQX and 40 μM D-AP5, which were blocked by 10 μM bicuculine. A) shows sIPSCs recorded on a pyramidal neuron in the barrel cortex from a control mouse. B) shows sIPSCs recorded on a pyramidal neuron in the barrel cortex from a whisker-trimmed mouse. Calibration bars are 10 pA/3 seconds C) illustrates cumulative probability versus sIPSC amplitudes in barrel cortical pyramidal neurons from whisker-trimmed mice (open symbols, n=11) and controls (filled, n=12). D) illustrates cumulative probability versus inter-IPSC intervals in barrel cortical pyramidal neurons from whisker-trimmed mice (open symbols, n=11) and controls (filled, n=12).



[Figure ID: F8]
Figure 8 

A loss of whisker inputs leads to plastic changes in the processes of GABAergic neurons in the barrel cortices. A) illustrates the images of GABAergic neurons and their processes from a control mouse (left panel) and a whisker-trimmed mouse (right). B) Statistical analysis illustrates primary processes on GABAergic neurons from whisker-trimmed mice and control (n=15, p<0.05). C) illustrates the secondary processes sprouted from the primary processes on GABAergic neurons from whisker-trimmed mice and controls (n=15, p=0.2).



Article Categories:
  • Research

Keywords: Neural plasticity, Neuron, Synapse, GABA, Glutamate, Barrel cortex and whisker.

Previous Document:  Statistical analysis of SHAPE-directed RNA secondary structure modeling.
Next Document:  Synthesis of 5-Hydroxymethyl-, 5-Formyl-, and 5-Carboxycytidine-triphosphates and Their Incorporatio...