Document Detail

Universal scaling in transient creep.
MedLine Citation:
PMID:  12484959     Owner:  NLM     Status:  PubMed-not-MEDLINE    
We present experimental evidence that pressure solution creep does not establish a steady-state interface microstructure as previously thought. Conversely, pressure solution controlled strain and the characteristic length scale of interface microstructures grow as the cubic root of time. Transient creep with the same scaling is known in metallurgy (Andrade creep). The apparent universal scaling of pressure solution transient creep is explained using an analogy with spinodal dewetting.
Dag Kristian Dysthe; Yuri Podladchikov; Francois Renard; Jens Feder; Bjørn Jamtveit
Related Documents :
19752659 - The relationship among pressure ulcers, oxygenation, and perfusion in mechanically vent...
7906329 - Pressure sores and pressure-decreasing mattresses: controlled clinical trial.
11153389 - Preventing heel breakdown.
9365359 - Total contact casts: pressure reduction at ulcer sites and the effect on the contralate...
19432659 - Dilemmas in measuring and using pressure ulcer prevalence and incidence: an internation...
18182959 - Moc-pssm cme article: pressure sores.
8160819 - Vascular ne responsiveness in portal hypertension: role of portal pressure and portosys...
3965059 - Blood pressure: distribution in students of junior and senior high schools in saint joh...
17971649 - General care in stroke: relevance of glycemia and blood pressure levels.
Publication Detail:
Type:  Journal Article     Date:  2002-11-20
Journal Detail:
Title:  Physical review letters     Volume:  89     ISSN:  0031-9007     ISO Abbreviation:  Phys. Rev. Lett.     Publication Date:  2002 Dec 
Date Detail:
Created Date:  2002-12-17     Completed Date:  2003-01-28     Revised Date:  2003-11-04    
Medline Journal Info:
Nlm Unique ID:  0401141     Medline TA:  Phys Rev Lett     Country:  United States    
Other Details:
Languages:  eng     Pagination:  246102     Citation Subset:  -    
Physics of Geological Processes, Postbox 1048 Blindern, N-0316 Oslo, Norway.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Reversible dynamic behavior in catalyst systems: oscillations of structure and morphology.
Next Document:  Materials science of the gel to fluid phase transition in a supported phospholipid bilayer.