Document Detail


Universal scaling in transient creep.
MedLine Citation:
PMID:  12484959     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
We present experimental evidence that pressure solution creep does not establish a steady-state interface microstructure as previously thought. Conversely, pressure solution controlled strain and the characteristic length scale of interface microstructures grow as the cubic root of time. Transient creep with the same scaling is known in metallurgy (Andrade creep). The apparent universal scaling of pressure solution transient creep is explained using an analogy with spinodal dewetting.
Authors:
Dag Kristian Dysthe; Yuri Podladchikov; Francois Renard; Jens Feder; Bjørn Jamtveit
Related Documents :
10159859 - Evaluation of an active seating system for pressure relief.
17084129 - Data-based models of how pressure ulcers develop in daily-living contexts of adults wit...
11933449 - Effect of visco-elastic foam mattresses on the development of pressure ulcers in patien...
3250579 - Pressure relief capabilities of the sof.care bed and the clinitron bed.
11868189 - Use of pressurease and airform mattresses in pressure ulcer care.
10523439 - Interrupting the pressure ulcer cycle.
12680909 - Differential effects of motilin on interdigestive motility of the human gastric antrum,...
1110339 - Wenckebach phenomenon within the atria.
1731669 - New method for describing the performance of cardiac surgery cannulas.
Publication Detail:
Type:  Journal Article     Date:  2002-11-20
Journal Detail:
Title:  Physical review letters     Volume:  89     ISSN:  0031-9007     ISO Abbreviation:  Phys. Rev. Lett.     Publication Date:  2002 Dec 
Date Detail:
Created Date:  2002-12-17     Completed Date:  2003-01-28     Revised Date:  2003-11-04    
Medline Journal Info:
Nlm Unique ID:  0401141     Medline TA:  Phys Rev Lett     Country:  United States    
Other Details:
Languages:  eng     Pagination:  246102     Citation Subset:  -    
Affiliation:
Physics of Geological Processes, Postbox 1048 Blindern, N-0316 Oslo, Norway. d.k.dysthe@fys.uio.no
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Reversible dynamic behavior in catalyst systems: oscillations of structure and morphology.
Next Document:  Materials science of the gel to fluid phase transition in a supported phospholipid bilayer.