Document Detail

Ultra-sensitive detection of Ag(+) ions based on Ag(+)-assisted isothermal exponential degradation reaction.
MedLine Citation:
PMID:  22921090     Owner:  NLM     Status:  Publisher    
Ag(+) ions are greatly toxic to a lot of algae, fungi, viruses and bacteria, which can also induce harmful side-effects to environments and human health. Herein we report an ultra-sensitive method for the selective detection of Ag(+) ions with electrochemical technique based on Ag(+)-assisted isothermal exponential degradation reaction. In the presence of Ag(+), mismatched trigger DNA can transiently bind to template DNA immobilized on an electrode surface through the formation of C-Ag(+)-C base pair, which then initiates the isothermal exponential degradation reaction. As a result, the mismatched trigger DNA may melt off the cleaved template DNA to trigger rounds of elongation and cutting. After the cyclic degradation reactions, removal of the template DNA immobilized on the electrode surface can be efficiently monitored by using electrochemical technique to show the status of the electrode surface, which can be then used to determine the presence of Ag(+). Further studies reveal that the proposed method can be ultra-sensitive to detect Ag(+) at a picomolar level. The selectivity of the detection can also be satisfactory, thus the proposed method for the Ag(+) ions detection may be potentially useful in the future.
Jing Zhao; Qi Fan; Sha Zhu; Aiping Duan; Yongmei Yin; Genxi Li
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-8-8
Journal Detail:
Title:  Biosensors & bioelectronics     Volume:  -     ISSN:  1873-4235     ISO Abbreviation:  Biosens Bioelectron     Publication Date:  2012 Aug 
Date Detail:
Created Date:  2012-8-27     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9001289     Medline TA:  Biosens Bioelectron     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier B.V. All rights reserved.
Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides...
Next Document:  Volatile general anesthetic sensing with organic field-effect transistors integrating phospholipid m...