Document Detail


Two non-invasive GFR-estimation methods in rat models of polycystic kidney disease: 3.0 Tesla dynamic contrast-enhanced MRI and optical imaging.
MedLine Citation:
PMID:  21444361     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
BACKGROUND: The aim of this study was the assessment of kidney morphology and glomerular filtration rate (GFR) in rat models of polycystic kidney disease and a healthy control group of Sprague-Dawley rats (SD rats). The performance of two non-invasive GFR estimation methods-3.0 Tesla magnetic resonance imaging (MRI) and optical imaging were investigated. Data of GFR assessment was compared to surrogate markers of kidney function and renal histology. METHODS: Optical imaging of GFR was performed transcutaneously in a small animal imaging system with the fluorescent renal marker fluorescein-isothiocyanate-labelled-sinistrin. Morphologic and dynamic renal imaging was done on a clinical 3.0T MR scanner. Renal perfusion analysis was performed with a two-compartment filtration model. RESULTS: The healthy SD rats showed physiological levels of creatinine and urea, indicating normal kidney function. These parameters were elevated in the small animal groups of polycystic kidney disease. For the calculation of perfusion and filtration parameters of kidney function in MRI, a 2D turbo FLASH sequence was performed and allowed to distinguish between normal GFR of healthy rats and reduced GFR of rats with polycystic kidney disease. Also, MRI GFR varied among two different rat strains of polycystic kidney disease, according to their status of renal function impairment. Optical imaging GFR confirmed higher GFR values in healthy rats compared to ill rats but did not show different results among the two rat strains of polycystic kidney disease. For this reason, MRI and optical imaging GFR estimation presented an intra-method bias. CONCLUSIONS: Both non-invasive estimation methods of GFR, MRI and optical imaging, can differentiate between healthy rats and animals with limited kidney function. Furthermore, optical imaging, unlike MRI, seems to consider that disease progression with increase of renal polycystic deterioration does not correlate with decrease of GFR in the initial stage of compensatory hyperfiltration.
Authors:
Maliha Sadick; Ulrike Attenberger; Bettina Kraenzlin; Hany Kayed; Stefan O Schoenberg; Norbert Gretz; Daniel Schock-Kusch
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-3-28
Journal Detail:
Title:  Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association     Volume:  -     ISSN:  1460-2385     ISO Abbreviation:  -     Publication Date:  2011 Mar 
Date Detail:
Created Date:  2011-3-29     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8706402     Medline TA:  Nephrol Dial Transplant     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
1Institute of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Associations of renal vascular resistance with albuminuria in adolescents and young adults.
Next Document:  Handgrip strength is an independent predictor of renal outcomes in patients with chronic kidney dise...