Document Detail

Tris[(6S)-6-hy-droxy-4-epi-shikimic acid] monohydrate: an enanti-omerically pure hy-droxy-lated shikimic acid derived from methyl shikimate.
Jump to Full Text
MedLine Citation:
PMID:  23284468     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
The title compound, 3C(7)H(10)O(6)·H(2)O, is the enanti-omerically pure product of a multi-step synthesis from the enanti-omerically pure natural shikimic acid. The asymmetric unit contains three mol-ecules of the acid and one mol-ecule of water. The cyclo-hexene rings of the acids have half-chair conformations. The carboxyl-ate, the four hydroxide groups and the additional water mol-ecule form a complex three-dimensional hydrogen-bonding network.
Authors:
Axel G Griesbeck; Claus Miara; Jörg-M Neudörfl
Related Documents :
10874628 - Effect of common food preservatives on mycelial growth and spore germination of fusariu...
24567188 - Origin of β-carotene-rich plastoglobuli in dunaliella bardawil.
23756778 - Large scale production of the active human asct2 (slc1a5) transporter in pichia pastori...
18177968 - Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for st...
20235688 - Design, synthesis, and urease inhibition studies of some 1,3,4-oxadiazoles and 1,2,4-tr...
2001808 - Direct measurement of first-pass ileal clearance of a bile acid in humans.
Publication Detail:
Type:  Journal Article     Date:  2012-10-20
Journal Detail:
Title:  Acta crystallographica. Section E, Structure reports online     Volume:  68     ISSN:  1600-5368     ISO Abbreviation:  Acta Crystallogr Sect E Struct Rep Online     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2013-01-03     Completed Date:  2013-01-04     Revised Date:  2013-04-18    
Medline Journal Info:
Nlm Unique ID:  101089178     Medline TA:  Acta Crystallogr Sect E Struct Rep Online     Country:  United States    
Other Details:
Languages:  eng     Pagination:  o3149-50     Citation Subset:  -    
Affiliation:
Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Koeln, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Acta Crystallogr Sect E Struct Rep Online
Journal ID (iso-abbrev): Acta Crystallogr Sect E Struct Rep Online
Journal ID (publisher-id): Acta Cryst. E
ISSN: 1600-5368
Publisher: International Union of Crystallography
Article Information
Download PDF
A full version of this article is available from Crystallography Journals Online.© Griesbeck et al. 2012
open-access:
Received Day: 05 Month: 9 Year: 2012
Accepted Day: 01 Month: 10 Year: 2012
collection publication date: Day: 01 Month: 11 Year: 2012
Electronic publication date: Day: 20 Month: 10 Year: 2012
pmc-release publication date: Day: 20 Month: 10 Year: 2012
Volume: 68 Issue: Pt 11
First Page: o3149 Last Page: o3150
PubMed Id: 23284468
ID: 3515248
Publisher Id: gg2099
DOI: 10.1107/S1600536812041256
Coden: ACSEBH
Publisher Item Identifier: S1600536812041256

Tris[(6S)-6-hy­droxy-4-epi-shikimic acid] monohydrate: an enanti­omerically pure hy­droxy­lated shikimic acid derived from methyl shikimate Alternate Title:3C7H10O6·H2O
Axel G. Griesbecka*
Claus Miaraa
Jörg-M. Neudörfla
aDepartment of Chemistry, University of Cologne, Greinstr. 4, 50939 Koeln, Germany
Correspondence: Correspondence e-mail: griesbeck@uni-koeln.de

Related literature  

A series of anti­tumor-active marine natural carbasugars has been isolated in the last two decades with a cyclo­hexene-1-carboxyl­ate core structure and four contiguous stereogenic centers (Numata et al., 1997). The relative configuration of these compounds, the pericosines, has been a matter of debate since the first reports on the isolation (Usami et al., 2008, 2009). By means of detailed NMR analysis of the natural compound pericosine D0 and comparison with the NMR data published for the 6-hy­droxy-5-epishikimic acid described herein, the absolute and relative configuration was established (Usami et al., 2006, 2011). This reveals the importance of this X-ray crystallographic determination that finally proves the assignments that resulted from spectroscopic analyses. For the synthesis, see: Griesbeck et al. (2007).[Chemical Structure ID: scheme1]


Experimental  
Crystal data  

  • 3C7H10O6·H2O
  • Mr = 588.47
  • Monoclinic,
  • a = 11.2561 (17) Å
  • b = 7.7049 (11) Å
  • c = 13.9688 (14) Å
  • β = 91.672 (8)°
  • V = 1211.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 100 K
  • 0.20 × 0.10 × 0.05 mm

Data collection  

  • Nonius KappaCCD diffractometer
  • 5629 measured reflections
  • 2786 independent reflections
  • 1399 reflections with I > 2σ(I)
  • Rint = 0.085

Refinement  

  • R[F2 > 2σ(F2)] = 0.054
  • wR(F2) = 0.102
  • S = 0.88
  • 2786 reflections
  • 371 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Hooft 1998); cell refinement: DENZO (Otwinowski & Minor 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller 1999); software used to prepare material for publication: PLATON (Spek 2009).


Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812041256/gg2099sup1.cif

Supplementary material file. DOI: 10.1107/S1600536812041256/gg2099Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041256/gg2099Isup3.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Notes

fnu1Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2099).

This research was supported by the Deutsche Forschungsgemeinschaft and by University start-up funding (2004–2005).

supplementary crystallographic information
Comment

The title compound is a enantiomerically pure, highly substituted polyhydroxylated cyclohexane derived from the natural shikimic acid. Polyfunctionalized shikimic acid derivatives, e.g. the drug oseltamivir (tamiflu) lately have become well known as drugs repressing the symptoms of bird flu. Furthermore, the 4-epi-shikimic acid skeleton is present in numerous natural products with interesting biological properties, one example is the (6S)-6-chloro derivative (pericosine A), an antitumour agent from Periconia byssoid (Usami et al., 2006). Synthetic efforts to new and efficient structural modifications of the shikimate skeleton are thus of current and high relevance.

The asymmetric unit contains three molecules of the acid and one molecule water. All three independent acid molecules have the same half chair conformation (Fig. 1). Two molecules of the acid form hydrogen bonded carboxylic acid dimers, which are connected to double layers by hydrogen bonds (Fig. 3). The third molecule of the acid and the water molecule form a second layer structure (Fig. 4). These two different layer structures are connected via additional hydrogen bonds, forming a three dimmensional network (Fig. 5).

Experimental

By means of a 7-step synthetic procedure (Fig. 2), the acetal 2 was synthesized starting from enantiomerically pure shikimic acid (Griesbeck et al., 2007) by a sequence of 1) esterification (methanol, camphorsulfonic acid), 2) acetalization (dimethoxypropane, camphorsulfonic acid), 3) trifluoromethanesulfonate formation (trifluoromethanesulfonic anhydride, pyridine), 4) dehydration (caesium carbonate, dimethylformamide), 5) singlet oxygenation (rose bengal, visible light, oxygen atmosphere, tetrachloromethane), 6) reduction (potassium iodide, water-acetic acid), and 7) saponification of the methyl ester(lithium hydroxide, water). The acetal 2 was hydrolyzed by the following procedure: To a solution of 60 mg (0.26 mmol) of 2 in 2.5 ml of water and 2.5 ml of methanol was added 2 drops of concentrated HCl under vigorous stirring at room temperature. The reaction mixture was stirred overnight and the solvent evaporated under reduced pressure. The residue was repeatedly dissolved in ethanol and the solvent evaporated to give 45 mg (91%) of the title compound 1 as a colorless product. Recrystallization from ethanol resulted in fine colorless needles, m.p. 140–141°C.

Refinement

Crystals of 1 are monoclinic; space group P21 was chosen as the acid component used was enantiopure sikimic acid and the absolute structure was set by reference to the known chirality of the enantiopure acid employed.

The hydrogen atoms of the hydroxy groups and the water molecule are partially disordered. Only one possible orientation was refined. The positions are constrained and treated as riding atoms with distances O—H = 0.84 Å. All other hydrogen atoms were placed in geometrically idealized positions and refined with using riding model with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for C=CH.

Figures
Crystal data
Data collection
Refinement
Special details
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
Atomic displacement parameters (Å2)
Geometric parameters (Å, º)
Hydrogen-bond geometry (Å, º)

Symmetry codes: (i) −x, y−3/2, −z; (ii) −x, y−1/2, −z−1; (iii) −x−1, y+1/2, −z−1; (iv) −x, y+1/2, −z−1; (v) −x+1, y−1/2, −z; (vi) −x, y+3/2, −z; (vii) x, y−1, z; (viii) −x, y−1/2, −z; (ix) −x, y+1/2, −z.


References
Griesbeck, A. G., Miara, C. & Neudörfl, J. (2007). Arkivoc, 8, 216–223.
Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
Keller, E. (1999). SCHAKAL99 University of Freiburg, Germany.
Numata, A., Iritani, M., Yamada, T., Minoura, K., Matsumura, E., Yamori, T. & Tsuruo, T. (1997). Tetrahedron Lett.38, 8215–8218.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Usami, Y., Horibe, Y., Takaoka, I., Ichikawa, H. & Arimoto, M. (2006). Synlett, 10, 1598–1600.
Usami, Y. & Mizuki, K. (2011). J. Nat. Prod.74, 877–881.
Usami, Y., Mizuki, K., Ichikawa, H. & Arimoto, M. (2008). Tetrahedron Asymmetry, 19, 1461–1464.
Usami, Y., Ohsugi, M., Mizuki, K., Ichikawa, H. & Arimoto, M. (2009). Org. Lett.11, 2699–2701.

Figures

[Figure ID: Fap1]
Fig. 1. 

A view of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.



[Figure ID: Fap2]
Fig. 2. 

Synthesis of the title compound



[Figure ID: Fap3]
Fig. 3. 

Double layer formed from two independent acid molecules (stereodrawing parallel view).



[Figure ID: Fap4]
Fig. 4. 

Layer formed from one independent molecule acid and water.



[Figure ID: Fap5]
Fig. 5. 

Two connected Layers.



Tables
[TableWrap ID: d1e178]
3C7H10O6·H2O F(000) = 620
Mr = 588.47 Dx = 1.614 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5629 reflections
a = 11.2561 (17) Å θ = 2.3–27.0°
b = 7.7049 (11) Å µ = 0.15 mm1
c = 13.9688 (14) Å T = 100 K
β = 91.672 (8)° Prism, colourless
V = 1211.0 (3) Å3 0.20 × 0.10 × 0.05 mm
Z = 2

[TableWrap ID: d1e306]
Nonius KappaCCD diffractometer 1399 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.085
Graphite monochromator θmax = 27.0°, θmin = 2.3°
φ and ω scans h = −6→14
5629 measured reflections k = −8→9
2786 independent reflections l = −14→17

[TableWrap ID: d1e404]
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0326P)2] where P = (Fo2 + 2Fc2)/3
2786 reflections (Δ/σ)max < 0.001
371 parameters Δρmax = 0.27 e Å3
3 restraints Δρmin = −0.28 e Å3

[TableWrap ID: d1e558]
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

[TableWrap ID: d1e657]
x y z Uiso*/Ueq
O1 −0.3102 (4) −0.2913 (5) −0.2574 (2) 0.0246 (12)
O2 −0.3049 (4) −0.4950 (5) −0.3725 (2) 0.0237 (11)
H2 −0.2943 −0.5608 −0.3251 0.036*
O3 −0.4164 (4) −0.2120 (5) −0.6636 (2) 0.0235 (11)
H3 −0.4002 −0.1782 −0.7189 0.035*
O4 −0.3797 (4) 0.1684 (5) −0.6388 (2) 0.0211 (11)
H4 −0.4069 0.2653 −0.6226 0.032*
O5 −0.2179 (4) 0.1329 (5) −0.4720 (2) 0.0199 (11)
H5 −0.1998 0.1762 −0.5249 0.030*
O6 −0.4911 (4) −0.0313 (5) −0.3704 (2) 0.0226 (11)
H6 −0.5149 0.0667 −0.3527 0.034*
C1 −0.3322 (5) −0.2021 (8) −0.4214 (4) 0.0133 (14)
C2 −0.3220 (5) −0.2449 (8) −0.5113 (4) 0.0181 (16)
H2AA −0.3016 −0.3617 −0.5251 0.022*
C3 −0.3400 (6) −0.1242 (8) −0.5937 (4) 0.0170 (15)
H3AA −0.2616 −0.0992 −0.6227 0.020*
C4 −0.3972 (6) 0.0455 (8) −0.5639 (4) 0.0195 (16)
H4AA −0.4844 0.0266 −0.5567 0.023*
C5 −0.3437 (6) 0.1095 (8) −0.4700 (4) 0.0167 (15)
H5AA −0.3817 0.2224 −0.4532 0.020*
C6 −0.3652 (5) −0.0227 (8) −0.3891 (4) 0.0166 (15)
H6AA −0.3188 0.0098 −0.3297 0.020*
C7 −0.3140 (5) −0.3311 (8) −0.3425 (4) 0.0175 (15)
O1A 0.3146 (4) 0.7830 (5) 0.2305 (3) 0.0250 (12)
O2A 0.2868 (4) 0.9807 (5) 0.1148 (2) 0.0272 (12)
H2A 0.2832 1.0478 0.1620 0.041*
O3A 0.4144 (4) 0.7044 (5) −0.1699 (2) 0.0261 (12)
H3A 0.3921 0.6804 −0.2262 0.039*
O4A 0.3839 (4) 0.3234 (5) −0.1463 (2) 0.0213 (11)
H4A 0.4305 0.2398 −0.1364 0.032*
O5A 0.2219 (4) 0.3483 (5) 0.0099 (2) 0.0235 (11)
H5A 0.2113 0.2508 −0.0159 0.035*
O6A 0.4887 (4) 0.5260 (5) 0.1274 (2) 0.0221 (11)
H6A 0.5103 0.4374 0.1584 0.033*
C1A 0.3275 (5) 0.6941 (8) 0.0687 (4) 0.0159 (15)
C2A 0.3199 (5) 0.7380 (8) −0.0230 (4) 0.0186 (16)
H2A1 0.2996 0.8547 −0.0383 0.022*
C3A 0.3412 (6) 0.6154 (8) −0.1043 (4) 0.0189 (16)
H3A1 0.2633 0.5876 −0.1371 0.023*
C4A 0.3988 (6) 0.4488 (7) −0.0705 (3) 0.0175 (16)
H4A1 0.4857 0.4701 −0.0591 0.021*
C5A 0.3472 (6) 0.3813 (8) 0.0213 (3) 0.0186 (16)
H5A1 0.3884 0.2709 0.0399 0.022*
C6A 0.3646 (6) 0.5122 (7) 0.1018 (4) 0.0172 (15)
H6A1 0.3184 0.4767 0.1586 0.021*
C7A 0.3083 (6) 0.8202 (8) 0.1454 (4) 0.0187 (16)
O1B −0.0345 (4) −0.3888 (5) −0.4150 (3) 0.0299 (12)
O2B −0.0513 (4) −0.4555 (5) −0.2592 (3) 0.0285 (12)
H2B −0.0715 −0.5529 −0.2813 0.043*
O3B 0.1426 (4) 0.0421 (5) −0.0919 (2) 0.0225 (11)
H3B 0.1045 0.0246 −0.0419 0.034*
O4B 0.1501 (4) 0.3201 (5) −0.2274 (2) 0.0251 (11)
H4B 0.2020 0.3209 −0.1830 0.038*
O5B −0.0695 (4) 0.2162 (5) −0.3176 (2) 0.0231 (11)
H5B −0.1197 0.1992 −0.3623 0.035*
O6B 0.1309 (4) −0.0858 (5) −0.4331 (2) 0.0246 (12)
H6B 0.1225 −0.0478 −0.4893 0.037*
C1B 0.0130 (6) −0.1703 (8) −0.2996 (4) 0.0208 (16)
C2B 0.0253 (6) −0.1288 (8) −0.2070 (4) 0.0265 (18)
H2B1 0.0105 −0.2157 −0.1606 0.032*
C3B 0.0617 (6) 0.0501 (8) −0.1727 (4) 0.0238 (17)
H3B1 −0.0107 0.1167 −0.1549 0.029*
C4B 0.1225 (6) 0.1430 (8) −0.2535 (4) 0.0227 (17)
H4B1 0.1979 0.0807 −0.2679 0.027*
C5B 0.0418 (6) 0.1435 (8) −0.3425 (4) 0.0198 (16)
H5B1 0.0782 0.2171 −0.3928 0.024*
C6B 0.0283 (6) −0.0423 (8) −0.3797 (4) 0.0242 (17)
H6B1 −0.0434 −0.0479 −0.4236 0.029*
C7B −0.0249 (6) −0.3495 (8) −0.3313 (4) 0.0224 (17)
O1W −0.0108 (6) 0.0088 (8) 0.0523 (4) 0.0444 (14)
H1W1 −0.071 (5) −0.047 (10) 0.031 (5) 0.08 (4)*
H1W2 −0.003 (9) −0.010 (15) 0.113 (2) 0.15 (5)*

[TableWrap ID: d1e1797]
U11 U22 U33 U12 U13 U23
O1 0.039 (3) 0.018 (3) 0.017 (2) −0.003 (2) 0.004 (2) −0.001 (2)
O2 0.040 (3) 0.012 (3) 0.019 (2) 0.000 (2) −0.0037 (19) 0.0025 (19)
O3 0.039 (3) 0.016 (3) 0.016 (2) −0.006 (2) 0.002 (2) 0.0002 (19)
O4 0.034 (3) 0.013 (3) 0.016 (2) −0.001 (2) 0.0000 (19) −0.0002 (19)
O5 0.021 (3) 0.020 (3) 0.019 (2) −0.003 (2) −0.0026 (19) 0.0009 (18)
O6 0.026 (3) 0.010 (3) 0.032 (2) −0.003 (2) 0.006 (2) 0.000 (2)
C1 0.013 (4) 0.008 (4) 0.019 (3) 0.001 (3) −0.003 (3) −0.001 (3)
C2 0.017 (4) 0.009 (4) 0.028 (4) −0.006 (3) −0.001 (3) 0.001 (3)
C3 0.014 (4) 0.016 (4) 0.021 (3) −0.005 (3) −0.003 (3) −0.004 (3)
C4 0.025 (4) 0.015 (4) 0.018 (3) 0.003 (3) −0.002 (3) 0.006 (3)
C5 0.022 (5) 0.006 (3) 0.022 (3) −0.003 (3) 0.002 (3) 0.003 (3)
C6 0.016 (4) 0.015 (4) 0.018 (3) −0.004 (3) 0.000 (3) −0.003 (3)
C7 0.007 (4) 0.017 (4) 0.029 (4) 0.003 (3) 0.001 (3) 0.005 (3)
O1A 0.033 (3) 0.023 (3) 0.019 (2) 0.002 (2) 0.002 (2) 0.002 (2)
O2A 0.049 (4) 0.011 (3) 0.022 (2) 0.005 (2) 0.000 (2) −0.006 (2)
O3A 0.039 (3) 0.021 (3) 0.019 (2) −0.008 (2) 0.000 (2) 0.002 (2)
O4A 0.024 (3) 0.020 (3) 0.020 (2) 0.002 (2) −0.0007 (19) −0.0047 (19)
O5A 0.022 (3) 0.019 (3) 0.029 (2) −0.002 (2) −0.001 (2) −0.0075 (19)
O6A 0.027 (3) 0.013 (3) 0.026 (2) −0.003 (2) −0.0100 (19) 0.0020 (19)
C1A 0.013 (4) 0.019 (4) 0.016 (3) −0.009 (3) −0.002 (3) 0.001 (3)
C2A 0.016 (4) 0.016 (4) 0.024 (3) 0.001 (3) 0.002 (3) 0.003 (3)
C3A 0.021 (4) 0.018 (4) 0.018 (3) −0.002 (3) 0.000 (3) 0.002 (3)
C4A 0.023 (5) 0.016 (4) 0.013 (3) −0.002 (3) −0.001 (3) −0.008 (3)
C5A 0.016 (4) 0.019 (4) 0.020 (3) 0.005 (3) −0.009 (3) −0.002 (3)
C6A 0.023 (4) 0.008 (4) 0.021 (3) −0.002 (3) 0.000 (3) 0.000 (3)
C7A 0.014 (4) 0.010 (4) 0.033 (4) −0.002 (3) 0.006 (3) 0.002 (3)
O1B 0.047 (4) 0.023 (3) 0.020 (2) −0.006 (2) −0.001 (2) −0.004 (2)
O2B 0.035 (3) 0.021 (3) 0.029 (2) −0.004 (2) 0.001 (2) −0.004 (2)
O3B 0.030 (3) 0.020 (3) 0.017 (2) −0.003 (2) −0.0082 (19) −0.0005 (18)
O4B 0.035 (3) 0.016 (3) 0.024 (2) −0.002 (2) −0.0052 (19) −0.001 (2)
O5B 0.024 (3) 0.018 (3) 0.027 (2) 0.000 (2) −0.003 (2) −0.001 (2)
O6B 0.030 (3) 0.024 (3) 0.021 (2) 0.002 (2) 0.007 (2) 0.0008 (19)
C1B 0.030 (5) 0.016 (4) 0.017 (3) 0.003 (3) −0.003 (3) 0.000 (3)
C2B 0.034 (5) 0.023 (4) 0.022 (3) −0.003 (4) 0.002 (3) 0.000 (3)
C3B 0.033 (5) 0.015 (4) 0.023 (3) 0.000 (3) −0.004 (3) −0.001 (3)
C4B 0.031 (5) 0.019 (4) 0.018 (3) 0.004 (3) −0.001 (3) −0.002 (3)
C5B 0.017 (4) 0.015 (4) 0.027 (3) 0.002 (3) 0.002 (3) 0.004 (3)
C6B 0.028 (5) 0.021 (4) 0.023 (3) −0.003 (3) 0.001 (3) −0.001 (3)
C7B 0.021 (5) 0.021 (4) 0.026 (4) 0.002 (3) −0.001 (3) 0.004 (3)
O1W 0.048 (4) 0.053 (4) 0.032 (3) −0.011 (3) −0.001 (3) −0.008 (3)

[TableWrap ID: d1e2573]
O1—C7 1.226 (6) C1A—C6A 1.530 (8)
O2—C7 1.336 (7) C2A—C3A 1.502 (8)
O2—H2 0.8400 C2A—H2A1 0.9500
O3—C3 1.449 (7) C3A—C4A 1.508 (8)
O3—H3 0.8400 C3A—H3A1 1.0000
O4—C4 1.429 (6) C4A—C5A 1.515 (7)
O4—H4 0.8400 C4A—H4A1 1.0000
O5—C5 1.429 (7) C5A—C6A 1.518 (7)
O5—H5 0.8400 C5A—H5A1 1.0000
O6—C6 1.450 (6) C6A—H6A1 1.0000
O6—H6 0.8400 O1B—C7B 1.210 (6)
C1—C2 1.307 (7) O2B—C7B 1.337 (6)
C1—C7 1.494 (8) O2B—H2B 0.8400
C1—C6 1.504 (8) O3B—C3B 1.431 (7)
C2—C3 1.490 (8) O3B—H3B 0.8400
C2—H2AA 0.9500 O4B—C4B 1.444 (7)
C3—C4 1.521 (8) O4B—H4B 0.8400
C3—H3AA 1.0000 O5B—C5B 1.425 (7)
C4—C5 1.510 (7) O5B—H5B 0.8400
C4—H4AA 1.0000 O6B—C6B 1.433 (6)
C5—C6 1.546 (7) O6B—H6B 0.8400
C5—H5AA 1.0000 C1B—C2B 1.336 (7)
C6—H6AA 1.0000 C1B—C6B 1.506 (7)
O1A—C7A 1.223 (6) C1B—C7B 1.507 (9)
O2A—C7A 1.329 (7) C2B—C3B 1.512 (8)
O2A—H2A 0.8400 C2B—H2B1 0.9500
O3A—C3A 1.426 (6) C3B—C4B 1.516 (8)
O3A—H3A 0.8400 C3B—H3B1 1.0000
O4A—C4A 1.440 (6) C4B—C5B 1.519 (8)
O4A—H4A 0.8400 C4B—H4B1 1.0000
O5A—C5A 1.437 (7) C5B—C6B 1.529 (8)
O5A—H5A 0.8400 C5B—H5B1 1.0000
O6A—C6A 1.436 (6) C6B—H6B1 1.0000
O6A—H6A 0.8400 O1W—H1W1 0.85 (2)
C1A—C2A 1.324 (7) O1W—H1W2 0.86 (2)
C1A—C7A 1.467 (8)
C7—O2—H2 109.5 O4A—C4A—H4A1 108.6
C3—O3—H3 109.5 C3A—C4A—H4A1 108.6
C4—O4—H4 109.5 C5A—C4A—H4A1 108.6
C5—O5—H5 109.5 O5A—C5A—C4A 111.5 (4)
C6—O6—H6 109.5 O5A—C5A—C6A 107.8 (5)
C2—C1—C7 121.8 (5) C4A—C5A—C6A 110.7 (5)
C2—C1—C6 123.4 (5) O5A—C5A—H5A1 108.9
C7—C1—C6 114.8 (5) C4A—C5A—H5A1 108.9
C1—C2—C3 124.9 (6) C6A—C5A—H5A1 108.9
C1—C2—H2AA 117.6 O6A—C6A—C5A 109.7 (5)
C3—C2—H2AA 117.6 O6A—C6A—C1A 105.3 (5)
O3—C3—C2 107.1 (5) C5A—C6A—C1A 110.9 (4)
O3—C3—C4 109.7 (5) O6A—C6A—H6A1 110.3
C2—C3—C4 112.0 (4) C5A—C6A—H6A1 110.3
O3—C3—H3AA 109.3 C1A—C6A—H6A1 110.3
C2—C3—H3AA 109.3 O1A—C7A—O2A 122.4 (5)
C4—C3—H3AA 109.3 O1A—C7A—C1A 123.3 (6)
O4—C4—C5 111.1 (5) O2A—C7A—C1A 114.3 (5)
O4—C4—C3 107.5 (4) C7B—O2B—H2B 109.5
C5—C4—C3 110.9 (5) C3B—O3B—H3B 109.5
O4—C4—H4AA 109.1 C4B—O4B—H4B 109.5
C5—C4—H4AA 109.1 C5B—O5B—H5B 109.5
C3—C4—H4AA 109.1 C6B—O6B—H6B 109.5
O5—C5—C4 113.2 (4) C2B—C1B—C6B 123.5 (6)
O5—C5—C6 105.9 (5) C2B—C1B—C7B 121.6 (6)
C4—C5—C6 110.7 (5) C6B—C1B—C7B 114.8 (5)
O5—C5—H5AA 109.0 C1B—C2B—C3B 123.0 (6)
C4—C5—H5AA 109.0 C1B—C2B—H2B1 118.5
C6—C5—H5AA 109.0 C3B—C2B—H2B1 118.5
O6—C6—C1 105.3 (5) O3B—C3B—C2B 111.8 (5)
O6—C6—C5 109.7 (5) O3B—C3B—C4B 108.5 (5)
C1—C6—C5 109.9 (4) C2B—C3B—C4B 108.6 (5)
O6—C6—H6AA 110.6 O3B—C3B—H3B1 109.3
C1—C6—H6AA 110.6 C2B—C3B—H3B1 109.3
C5—C6—H6AA 110.6 C4B—C3B—H3B1 109.3
O1—C7—O2 122.7 (5) O4B—C4B—C3B 110.9 (4)
O1—C7—C1 123.3 (6) O4B—C4B—C5B 108.9 (5)
O2—C7—C1 114.0 (5) C3B—C4B—C5B 109.8 (5)
C7A—O2A—H2A 109.5 O4B—C4B—H4B1 109.1
C3A—O3A—H3A 109.5 C3B—C4B—H4B1 109.1
C4A—O4A—H4A 109.5 C5B—C4B—H4B1 109.1
C5A—O5A—H5A 109.5 O5B—C5B—C4B 108.1 (5)
C6A—O6A—H6A 109.5 O5B—C5B—C6B 111.8 (5)
C2A—C1A—C7A 122.0 (6) C4B—C5B—C6B 109.1 (5)
C2A—C1A—C6A 122.4 (5) O5B—C5B—H5B1 109.3
C7A—C1A—C6A 115.5 (5) C4B—C5B—H5B1 109.3
C1A—C2A—C3A 124.3 (6) C6B—C5B—H5B1 109.3
C1A—C2A—H2A1 117.9 O6B—C6B—C1B 110.2 (5)
C3A—C2A—H2A1 117.9 O6B—C6B—C5B 108.8 (5)
O3A—C3A—C2A 106.9 (5) C1B—C6B—C5B 111.9 (4)
O3A—C3A—C4A 111.0 (5) O6B—C6B—H6B1 108.6
C2A—C3A—C4A 112.0 (5) C1B—C6B—H6B1 108.6
O3A—C3A—H3A1 108.9 C5B—C6B—H6B1 108.6
C2A—C3A—H3A1 108.9 O1B—C7B—O2B 124.0 (6)
C4A—C3A—H3A1 108.9 O1B—C7B—C1B 122.0 (6)
O4A—C4A—C3A 107.5 (4) O2B—C7B—C1B 114.0 (5)
O4A—C4A—C5A 110.7 (5) H1W1—O1W—H1W2 109 (8)
C3A—C4A—C5A 112.6 (5)
C7—C1—C2—C3 179.4 (6) O5A—C5A—C6A—O6A 169.7 (4)
C6—C1—C2—C3 0.7 (10) C4A—C5A—C6A—O6A −68.1 (6)
C1—C2—C3—O3 −132.5 (6) O5A—C5A—C6A—C1A −74.4 (6)
C1—C2—C3—C4 −12.2 (9) C4A—C5A—C6A—C1A 47.7 (7)
O3—C3—C4—O4 −77.6 (6) C2A—C1A—C6A—O6A 98.2 (6)
C2—C3—C4—O4 163.7 (5) C7A—C1A—C6A—O6A −77.9 (6)
O3—C3—C4—C5 160.8 (5) C2A—C1A—C6A—C5A −20.4 (8)
C2—C3—C4—C5 42.0 (7) C7A—C1A—C6A—C5A 163.5 (5)
O4—C4—C5—O5 −62.3 (6) C2A—C1A—C7A—O1A 179.9 (6)
C3—C4—C5—O5 57.2 (6) C6A—C1A—C7A—O1A −4.0 (9)
O4—C4—C5—C6 178.9 (5) C2A—C1A—C7A—O2A −2.0 (9)
C3—C4—C5—C6 −61.6 (6) C6A—C1A—C7A—O2A 174.2 (5)
C2—C1—C6—O6 99.4 (6) C6B—C1B—C2B—C3B −3.0 (11)
C7—C1—C6—O6 −79.5 (6) C7B—C1B—C2B—C3B −179.2 (6)
C2—C1—C6—C5 −18.7 (9) C1B—C2B—C3B—O3B −140.0 (6)
C7—C1—C6—C5 162.5 (5) C1B—C2B—C3B—C4B −20.4 (9)
O5—C5—C6—O6 169.9 (4) O3B—C3B—C4B—O4B −63.3 (6)
C4—C5—C6—O6 −67.0 (6) C2B—C3B—C4B—O4B 175.1 (5)
O5—C5—C6—C1 −74.8 (6) O3B—C3B—C4B—C5B 176.4 (5)
C4—C5—C6—C1 48.3 (7) C2B—C3B—C4B—C5B 54.7 (7)
C2—C1—C7—O1 171.8 (6) O4B—C4B—C5B—O5B −67.1 (6)
C6—C1—C7—O1 −9.3 (9) C3B—C4B—C5B—O5B 54.4 (6)
C2—C1—C7—O2 −9.7 (9) O4B—C4B—C5B—C6B 171.1 (5)
C6—C1—C7—O2 169.2 (5) C3B—C4B—C5B—C6B −67.4 (6)
C7A—C1A—C2A—C3A 178.6 (6) C2B—C1B—C6B—O6B 113.1 (7)
C6A—C1A—C2A—C3A 2.7 (10) C7B—C1B—C6B—O6B −70.4 (7)
C1A—C2A—C3A—O3A −134.8 (6) C2B—C1B—C6B—C5B −8.1 (10)
C1A—C2A—C3A—C4A −12.9 (9) C7B—C1B—C6B—C5B 168.4 (5)
O3A—C3A—C4A—O4A −77.0 (6) O5B—C5B—C6B—O6B 160.3 (4)
C2A—C3A—C4A—O4A 163.5 (5) C4B—C5B—C6B—O6B −80.2 (6)
O3A—C3A—C4A—C5A 160.8 (5) O5B—C5B—C6B—C1B −77.7 (6)
C2A—C3A—C4A—C5A 41.3 (7) C4B—C5B—C6B—C1B 41.8 (7)
O4A—C4A—C5A—O5A −60.9 (6) C2B—C1B—C7B—O1B −178.8 (6)
C3A—C4A—C5A—O5A 59.4 (6) C6B—C1B—C7B—O1B 4.6 (10)
O4A—C4A—C5A—C6A 179.1 (5) C2B—C1B—C7B—O2B 3.9 (10)
C3A—C4A—C5A—C6A −60.5 (7) C6B—C1B—C7B—O2B −172.7 (5)

[TableWrap ID: d1e3847]
D—H···A D—H H···A D···A D—H···A
O2—H2···O1Ai 0.84 1.81 2.624 (5) 164
O3—H3···O4Aii 0.84 1.90 2.705 (5) 161
O4—H4···O6iii 0.84 1.94 2.738 (6) 157
O5—H5···O6Biv 0.84 2.08 2.736 (5) 134
O6—H6···O3iii 0.84 1.89 2.718 (6) 169
O6A—H6A···O3Av 0.84 1.99 2.764 (6) 153
O4A—H4A···O6Av 0.84 1.88 2.712 (6) 168
O5B—H5B···O5 0.84 1.93 2.765 (5) 171
O5A—H5A···O3B 0.84 2.06 2.882 (5) 164
O2A—H2A···O1vi 0.84 1.84 2.664 (5) 167
O6B—H6B···O1Biv 0.84 2.05 2.801 (5) 149
O4B—H4B···O4A 0.84 2.10 2.835 (6) 147
O2B—H2B···O5Bvii 0.84 1.85 2.663 (6) 163
O3B—H3B···O1W 0.84 1.88 2.703 (6) 166
O3A—H3A···O4iv 0.84 1.89 2.705 (5) 163
O1W—H1W1···O5Aviii 0.85 (2) 1.95 (2) 2.794 (7) 173 (8)
O1W—H1W2···O2Bix 0.86 (2) 2.16 (5) 2.967 (6) 157 (11)


Article Categories:
  • Organic Papers


Previous Document:  (Z)-4-[(2-Amino-4,5-dichloro-anilino)(phenyl)methyl-idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one.
Next Document:  2-Amino-5-methyl-pyridinium 6-oxo-1,6-dihydro-pyridine-2-carboxyl-ate.