Document Detail


Transient regenerative potential of the neonatal mouse heart.
MedLine Citation:
PMID:  21350179     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Certain fish and amphibians retain a robust capacity for cardiac regeneration throughout life, but the same is not true of the adult mammalian heart. Whether the capacity for cardiac regeneration is absent in mammals or whether it exists and is switched off early after birth has been unclear. We found that the hearts of 1-day-old neonatal mice can regenerate after partial surgical resection, but this capacity is lost by 7 days of age. This regenerative response in 1-day-old mice was characterized by cardiomyocyte proliferation with minimal hypertrophy or fibrosis, thereby distinguishing it from repair processes. Genetic fate mapping indicated that the majority of cardiomyocytes within the regenerated tissue originated from preexisting cardiomyocytes. Echocardiography performed 2 months after surgery revealed that the regenerated ventricular apex had normal systolic function. Thus, for a brief period after birth, the mammalian heart appears to have the capacity to regenerate.
Authors:
Enzo R Porrello; Ahmed I Mahmoud; Emma Simpson; Joseph A Hill; James A Richardson; Eric N Olson; Hesham A Sadek
Related Documents :
453049 - Echocardiographic screening to assess the severity of congenital aortic valve stenosis ...
18515669 - Echocardiographic follow-up after implanting 17-mm regent mechanical prostheses.
19211269 - Massive acute infarction of the right ventricular wall without or only minimal infarcti...
1251279 - The use of intra-aortic balloon pumping in cardiac surgical patients.
9514469 - Comparison of frequency of new coronary events in older persons with mild, moderate, an...
9676799 - Balloon aortic valvuloplasty in young adults by antegrade, transseptal approach using i...
4018779 - Maternal floor infarction.
1842939 - Doppler echocardiographic assessment of the diastolic properties of the cardiac ventric...
24367279 - Huntington's disease induced cardiac amyloidosis is reversed by modulating protein fold...
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Science (New York, N.Y.)     Volume:  331     ISSN:  1095-9203     ISO Abbreviation:  Science     Publication Date:  2011 Feb 
Date Detail:
Created Date:  2011-02-25     Completed Date:  2011-03-14     Revised Date:  2013-06-30    
Medline Journal Info:
Nlm Unique ID:  0404511     Medline TA:  Science     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1078-80     Citation Subset:  IM    
Affiliation:
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Aging
Animals
Animals, Newborn
Cardiomegaly
Cell Lineage
Cell Proliferation
Echocardiography
Fibrosis
Heart / physiology*
Heart Ventricles / surgery
Mice
Myocardial Contraction
Myocardium / pathology
Myocytes, Cardiac / physiology*
Regeneration*
Sarcomeres / ultrastructure
Stroke Volume
Grant Support
ID/Acronym/Agency:
HL100401-01/HL/NHLBI NIH HHS; R01 HL077439-06/HL/NHLBI NIH HHS; R01 HL077439-06W1/HL/NHLBI NIH HHS; R01 HL077439-07/HL/NHLBI NIH HHS; R01 HL077439-08/HL/NHLBI NIH HHS; R01 HL093039-01A1/HL/NHLBI NIH HHS; R01 HL093039-01A1W1/HL/NHLBI NIH HHS; R01 HL093039-02/HL/NHLBI NIH HHS; R01 HL093039-03/HL/NHLBI NIH HHS; R01 HL115275/HL/NHLBI NIH HHS; R37 HL053351-12/HL/NHLBI NIH HHS; R37 HL053351-13/HL/NHLBI NIH HHS; R37 HL053351-14/HL/NHLBI NIH HHS; R37 HL053351-15/HL/NHLBI NIH HHS; U01 HL100401/HL/NHLBI NIH HHS
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Development of transgenic fungi that kill human malaria parasites in mosquitoes.
Next Document:  Translation-Independent Localization of mRNA in E. coli.