Document Detail

Transient high glycaemic intake in the last trimester of pregnancy increases offspring birthweight and postnatal growth rate in sheep: a randomised control trial.
Jump to Full Text
MedLine Citation:
PMID:  19385960     Owner:  NLM     Status:  MEDLINE    
OBJECTIVE: Investigate the effect of transient hyperglycemic intake (analogous to snacking on high glycaemic foods) in the third trimester of pregnancy on offspring birthweight and subsequent growth in sheep.
DESIGN: Randomised trial.
SETTING: University research farm.
SAMPLE: Third trimester pregnant ewes.
METHODS: Ewes were blocked on weight, age and litter size and were randomly assigned to receive oral administration of 100 ml of propylene glycol (PG; n = 51) or 100 ml of water (control, C; n = 53) twice/day. Twice during treatment, 12 ewes from each group were selected and blood samples collected to determine the glucose and insulin response to treatment.
MAIN OUTCOME MEASURES: At birth, blood was collected from the lambs, their body dimensions measured and body weights recorded at 0, 6 and 12 weeks of age after which lambs were slaughtered when they reached 40 kg live weight.
RESULTS: Administration of PG elevated (P < 0.05) plasma glucose and insulin concentrations for 2 hours post administration compared with control ewes. Lambs (C: n = 80; PG: n = 70) born to ewes fed high glycaemic meals had higher birthweights (C: 5.01 +/- 0.18 kg; PG: 5.27 +/- 0.22 kg, P = 0.032), plasma glucose concentrations (P = 0.001) and ponderal index (weight/height(3), P = 0.043) and reached a similar (P > 0.05) slaughter carcass weight (C: 20.0 +/- 0.51 kg; PG: 20.6 +/- 0.55 kg) at an earlier age (PG: 166.0 +/- 13.2; C: 183.4 +/- 13.8 days, P = 0.039) compared with control lambs.
CONCLUSIONS: Transient high glycaemic intakes in the third trimester of pregnancy resulted in heavier offspring at birth that had faster growth rates in early postnatal life. This animal model is relevant for studying the relationship between maternal diet, fetal size and the risk of childhood obesity.
N A Smith; F M McAuliffe; K Quinn; P Lonergan; A C O Evans
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2009-04-08
Journal Detail:
Title:  BJOG : an international journal of obstetrics and gynaecology     Volume:  116     ISSN:  1471-0528     ISO Abbreviation:  BJOG     Publication Date:  2009 Jun 
Date Detail:
Created Date:  2009-06-15     Completed Date:  2009-08-10     Revised Date:  2013-06-02    
Medline Journal Info:
Nlm Unique ID:  100935741     Medline TA:  BJOG     Country:  England    
Other Details:
Languages:  eng     Pagination:  975-83     Citation Subset:  AIM; IM    
School of Agriculture Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Animals, Newborn
Birth Weight / drug effects*
Blood Glucose / metabolism*
Dietary Carbohydrates / adverse effects
Fetal Macrosomia / blood,  etiology*
Growth / drug effects*
Insulin / metabolism*
Pregnancy Trimester, Third
Propylene Glycol / administration & dosage,  pharmacology*
Random Allocation
Reg. No./Substance:
0/Blood Glucose; 0/Dietary Carbohydrates; 0/Insulin; 57-55-6/Propylene Glycol

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BJOG
Journal ID (publisher-id): bjo
ISSN: 1470-0328
ISSN: 1471-0528
Publisher: Blackwell Publishing Ltd
Article Information
Download PDF
© 2009 The authors Journal compilation © RCOG 2009 BJOG An International Journal of Obstetrics and Gynaecology
Accepted Day: 04 Month: 2 Year: 2009
Print publication date: Month: 6 Year: 2009
Electronic publication date: Day: 08 Month: 4 Year: 2009
Volume: 116 Issue: 7
First Page: 975 Last Page: 983
ID: 2728893
PubMed Id: 19385960
DOI: 10.1111/j.1471-0528.2009.02149.x

Transient high glycaemic intake in the last trimester of pregnancy increases offspring birthweight and postnatal growth rate in sheep: a randomised control trial
NA Smitha
FM McAuliffebc
K Quinna
P Lonerganac
ACO Evansac
aSchool of Agriculture Food Science and Veterinary Medicine, University College DublinBelfield, Dublin, Ireland
bUCD Obstetrics and Gynaecology, School of Medicine and Medical Science, National Maternity HospitalDublin, Ireland
cUCD Conway Institute of Biomolecular and Biomedical Research, College of Life Sciences, University College DublinBelfield, Dublin, Ireland
Correspondence: Correspondence: A Evans, UCD Veterinary Science Centre, Belfield, Dublin 4, Ireland. Email
Please cite this paper as: Smith N, McAuliffe F, Quinn K, Lonergan P, Evans A. Transient high glycaemic intake in the last trimester of pregnancy increases offspring birthweight and postnatal growth rate in sheep: a randomised control trial. BJOG 2009; 116:975–983.


Experimental evidence in humans has established that maternal weight and maternal weight gain during pregnancy significantly influences infant birthweight in humans.14 Fetal macrosomia (large for dates with birthweight >4.0 Kg) is associated with an increased risk of maternal perineal trauma5 and an increased risk of trauma to the infant.6,7 Additionally, recent studies have found that infants born at the highest end of the distribution for weight were at a higher risk of being obese in childhood, adolescence and adulthood when compared with normal sized infants.8,9 In humans, the source of maternal glucose originates either from the maternal liver or from the maternal diet. High maternal glucose concentrations are thought to increase maternal weight gain, result in feto-placental overgrowth as well as a higher risk of fetal macrosomia, while low maternal glycaemic diets result in normal maternal weight gain and produces infants with birthweights between the 25th and 50th percentile.10 A recent study has shown a relationship between elevated maternal glucose concentrations during gestation (below those levels diagnostic of diabetes) and increased birthweight.11 With the above evidence in mind, it is apparent that there is a need to control the level of glucose consumption during pregnancy to help reduce maternal and fetal trauma at parturition, as well as reducing the risk of obesity related adult diseases later in life.

Consumption of high glycaemic index diets increase postprandial glucose peaks as well as increasing fasting glucose levels compared to low glycaemic diets.12 In addition, lifestyle choices mean that pregnant women in the developed world often consume high glycaemic snacks between meals that may temporarily increase circulating glucose and insulin concentrations.13 The impact high glycaemic maternal diet, causing transient elevations in glucose concentrations on fetal development has not been studied.

Glucose is the main energy substrate for fetal growth1416 and fetal insulin permits greater glucose and amino acid entry into cells, increasing metabolism and, ultimately, fetal growth.17 Propylene glycol is a 3-carbon compound (C3H8O2) derived from propylene. In ruminants, it increases ruminal propionate, which is then transformed to pyruvate and eventually converted to glucose in the liver via oxaloacetate18,19 Propylene glycol is widely used in ruminants as an oral drench and is a gluconeogenic precursor that elicits a glucose and insulin response.18,19

The aim of this study was to investigate the consequences of transient, intermittent high glycaemic intake during the last trimester of pregnancy on neonatal size and postnatal growth in an animal model. To achieve this aim, we studied lambs born to pregnant ewes that received a twice daily high glycaemic oral dose of propylene glycol or water (control) in addition to their normal meals during the last trimester of pregnancy.

Materials and methods

This randomised controlled trial was approved by the UCD Animal Research Ethics Committee. All experimental procedures involving animals were licensed by the Department of Health and Children (a Department of the Irish Government), in accordance with the Cruelty to Animals Act (Ireland 1897) and European Community Directive 86/609/EC.

Sheep are considered a useful model for humans in which to investigate the physiology of pregnancy and fetal development20 as they have a body weight of 65 to 85 kg, have a 17 day (average) reproductive cycle, usually have one or two lambs per pregnancy, have a relatively long gestation of 147 days (range 142–152 days), are amenable to reproduction, nutrition and surgical manipulation (as required) and can tolerate multiple observations (e.g. ultrasound) and tissue collections (e.g. blood sampling).

Experiment 1: Establishment of propylene glycol dosage

A preliminary experiment was carried out on nine non pregnant 4-year-old ewes to investigate the effects of different doses of propylene glycol on their glucose and insulin response. Ewes were randomly assigned to one of three treatment groups and were administered orally either; (i) 50 ml water (n = 3), (ii) 50 ml propylene glycol (n = 3), (iii) 100 ml propylene glycol (n = 3). Blood samples (4 ml collected into a heparinised and a sodium oxalate vacutainer [Unitech, Dublin, Ireland]) were taken at −30, 0, 30, 60, 90, 120, 150, 180, 240 and 300 minutes relative to dosing with water or propylene glycol. All blood was centrifuged at 1600 × g for 20 minutes at 4ºC. The plasma was separated and stored at −20ºC until analysis.

Experiment 2: Effect of feeding high glycaemic meals to ewes during the last trimester of pregnancy on lamb weight and growth rates

A schematic presentation of the animals and treatments is presented in the consort flowchart (Figure 1). To synchronise mating and subsequent lambing, an intravaginal progestagen pessary (30 mg flugestone acetate; Chronogest, Intervet, Boxmeer, the Netherlands) was inserted into approximately 300 Suffolk-cross ewes ranging in age from 2 to 5 years for 12 days, which were later mated with rams at a ratio of one ram per seven ewes. To determine litter size and confirm stage of gestation, ewes were scanned using transabdominal ultrasonography 75 days after ram introduction and remained outdoors on permanent grassland until they were housed at 82 days gestation. From housing until parturition, ewes were offered grass silage ad libitum. Based on established criteria,21 the energy requirements of the ewes was estimated to be 12 MJ at 90 days gestation rising to 20 MJ just before lambing. This was provided by offering grass silage ad libitum and supplemented with 500 g to 700 g of concentrate meal.

On day 98 of gestation (the first day of the third trimester), 104 ewes were chosen from the main flock after a sample size calculation that indicated a need for at least 50 animals in each of the two groups (see below). To do this, ewes from the main flock were excluded if they were not pregnant or were carrying three or more fetuses. Remaining animals were then divided into large holding pens containing ewes with single or twin fetuses. They were then randomly presented by the stock person to be weighed and their ear tag number (assigned at birth by the Department of Agriculture) recorded until we had assembled 50 ewes with single fetuses and 54 ewes with twin fetuses. Upon completion of weighing, ewes were alternately assigned to one of the two treatment groups (see below) from the list of ear tag numbers (recorded in random order during weighing). The two treatment groups were 100 ml twice per day (0800 and 1600) of water (n = 53) or propylene glycol (n = 51) (Inform Nutrition Ireland Ltd, Cork, Ireland) from the afternoon of day 98 of gestation to the first signs of parturition about day 147. The propylene glycol (200 ml per day) provided 4.4 MJ per day of energy to the propylene glycol treated ewes.

On day 109 of gestation, six ewes from each of the treatment groups (PG or C treated single and twin bearing ewes) were randomly selected. The same animals were selected again on day 140 of gestation. On each day, blood samples (4 ml collected into a heparinised and a sodium oxalate vacutainer tubes (Unitech, Dublin, Ireland) were taken every 30 to 60 minutes from 90 minutes before the first treatment of propylene glycol or water. All blood was centrifuged at 1600 × g for 20 minutes at 4ºC. The plasma was separated and stored at −20ºC until analysis. We chose to characterise the glucose and insulin response to treatment on day 109 of gestation as this was 10 days after the start of treatment and on day 140 of gestation as this was the latest day during treatment that we could predict no ewes would have started lambing (labour). Six ewes per groups were chosen based on previous experience of the variation among animals (contributing to a sample size calculation) for concentrations of glucose and insulin.

At birth, lambs were given individually identifying punch earl tags, lambs were weighed, their gender was recorded, blood samples were taken before their first feed and were analysed for plasma glucose and IGF-I concentrations. Body dimensions (head circumference, height, thoracic circumference, jaw circumference, crown rump length, body length, inside limb length) were measured within 24 hours of birth using a standard measuring tape. Rohrer’s ponderal index in newborns (birthweight/height × 100)3 has been used as an indicator of fetal growth status, especially to assess asymmetrical intrauterine growth retardation. A ponderal index was calculated as weight/height3 expressed as kg/cm3. In humans, the ponderal index incorporates standing height, i.e. the length of the spine and long bones, whereas in quadrupeds, the length of the spine is not included in height.22 At approximately 1 day of age, ewes with their lambs were moved to pasture where they had ad libitum access to grass and water for the remainder of the experiment. Ewes nursing their lambs in all groups were maintained together on the same pasture and maintained equally at all times. The offspring were weighed at 6 and 12 weeks of age until they reached an approximate weight of 40 kg when they were slaughtered in a commercial abattoir house. Carcass weight and classification details (based on EUROP system) of each lamb was recorded. Arterial blood pressure of the lambs was measured using a noninvasive blood pressure monitor (CARDELL Veterinary Monitor 9401BP; SHARN Veterinary Inc. Tampa, FL, USA). At birth, a 2.0-cm-wide cuff with a circumference of 3 to 6 cm was placed on the metacarpus of the left forelimb where blood pressure could be measured from the dorsal metacarpal artery. This method has been validated for a number of species including sheep,23 dogs24 and pigs.25 To ensure an accurate reading, the cuff was selected so that its width was 40% of the limb diameter. Systolic, diastolic and mean arterial blood pressure and heart rate were recorded five times in each lamb. The highest and the lowest readings were discarded and an average was calculated from the three remaining readings. At all stages of data collection from the lambs, the treatments that their mothers received in the last trimester of gestation was unknown (data collection was blinded). Data were collected from all live lambs at birth (0 singles were born dead and in eight cases one twin of the pair was born dead; 3 C and 5 PG), but in cases where lambs subsequently lost their ear tags (and hence their identity), further data on them were not collected.

Hormone assays

Plasma insulin concentrations were determined using a two-site fluoroimmunometric assay (Auto-DELFIA insulin; Perkin Elmer Life Sciences, Wallac Oy, Turku, Finland; catalogue no. B080-101) validated for bovine plasma (Ting et al. 2004). The intra-assay and inter-assay coefficients of variation for samples containing low (1.96 ± 0.12 μU/ml), medium (4.19 ± 0.49 μU/ml) and high (11.65 ± 2.12 μU/ml) insulin concentrations were all <6.5%. The analytical sensitivity of the assays is typically better than 0.5 μU/ml.

Plasma glucose concentrations were determined by enzymatic analysis using hexokinase and glucose-6-phosphate dehydrogenase enzymes to measure the formation of NADH photometrically (Randox imola system; Randox Laboratories Ltd., Co. Antrim, UK). The mean inter-assay coefficients of variation for samples containing low (6.15 ± 0.04 mmol/l) and high (16.27 ± 0.14 mmol/l) glucose concentrations were 2.82 and 2.05% respectively. The sensitivity of the assay was 0.64 mmol/l.

Plasma IGF-I concentrations were measured by double-antibody RIA (Armstrong et al. 1990). The samples were analysed as duplicate 100 μl aliquots and the sensitivity of the assay was 39 pg/ml. The mean inter-assay coefficients of variation for samples containing low (106.26 ± 9.04 pg/ml) medium (161.74 ± 9.04 pg/ml) and high (452.40 ± 64.43 pg/ml) IGF-I concentrations were 5.12, 13.56 and 10.58% respectively.

Statistical analysis

All data were organised on several spread sheets by NS. These were circulated to all authors. KQ did all statistical analyses using SAS and circulated the output files. NS summarised the data and statistical findings which were then discussed and interpreted by all authors. All data are presented as means ± 95% confidence intervals, except for the Figures that are presented as the mean ± SEM (where the 95% confidence interval = 1.96 × SEM) and significance was accepted when P< 0.05. Area under the curve (AUC) was determined for glucose and insulin concentrations on day 109 and day 140 using the trapezoidal rule. This is the hormone response to treatment (increase) above the base line concentrations.26 Statistical comparisons between AUC for propylene glycol and water groups were completed using nonparametric analysis of variance. Characteristics of lambs at birth were analysed using factorial Analysis of variance (ANOVA) using PROC GLM with the model including the main effects of treatment, gender and litter size and interactions. Nonsignificant terms in the terms were excluded from final analyses. Post hoc analysis was performed with a Tukey’s HSD test as needed.

Experiment 1: Propylene glycol dose

Insulin concentrations increased and returned to pre treatment concentrations by 150, 240 and 240 minutes in the three ewes that received 50 mls of propylene glycol (data not shown). Insulin concentrations increased in all three ewes that received 100 mls of propylene glycol and decreased to pre treatment values by 300 mins in one ewe and had not returned to pre treatment concentrations by 300 mins when blood sampling ended in the remaining two ewes (data not shown). Based on these findings, a dose of 100 ml was chosen for Experiment 2.

Experiment 2: Effect of feeding high glycaemic meals to ewes during the last trimester of pregnancy on lamb weight and growth rates

On day 98 of gestation (start of treatment), there were no differences among groups for the body weights of the ewes (81.0 kg ± 1.88, n = 104; P > 0.05). At both day 109 and day 140 of gestation, there was no difference (P > 0.30) in glucose or insulin concentrations between ewes with single or twin lambs (or interactions of litter size and treatment, P > 0.20); hence, the data were combined and are presented as propylene glycol (n = 12 ewes) versus water (n = 12 ewes) treatments at 109 and 140 days of gestation. Before treatment on day 109 of gestation, plasma glucose and insulin area under the curve (AUC) concentrations were not different (P > 0.05) between groups (Figure 2) and over the course of the entire 16 hour blood collection period, neither glucose nor insulin AUC concentrations were different among groups (P > 0.05). However, following treatment at 0800 hours on day 109 of gestation glucose (PG: 21.8 ± 6.9 mM/l; C: 6.1 ± 4.9 mM/l, P = 0.002) and insulin (PG: 504.8 ± 246.9 μU/ml; C: 1.3 ± 49.8 μU/ml, P = 0.006) 2 hour AUC were significantly greater in propylene glycol treated than water treated ewes. Similarly, at 16.00 hours, administration of propylene glycol resulted in a significantly larger glucose (PG: 38.8 ± 11.2 mM/l; C: 14.8 ± 10.6 mM/l, P = 0.006) and insulin (PG: 452.2 ± 143.7 μU/ml;C: 136.7 ± 114.4 μU/ml, P = 0.006) AUC response compared to water treated ewes (Figure 2).

Before treatment on day 140 of gestation, plasma glucose and insulin AUC were not different among groups (Figure 3) and, as for day 109 of gestation, over the course of the whole 16 hour blood collection period, neither glucose nor insulin AUC concentrations were different among groups (P > 0.05). However, following administration of propylene glycol at 08.00 hours glucose (PG: 26.7 ± 10.8 mM/l; C: 2.21 ± 2.37 mM/l, P = 0.006) and insulin (PG: 339.6 ± 161.5 μU/ml; C: 28.6 ± 44.3 μU/ml, P = 0.002) AUC were significantly elevated during the 2 hours following administration compared with the water treated control group. At 16.00 hours, glucose AUC response to propylene glycol was not significantly larger (PG: 40.2 ± 20.1 mM/l; C: 14.8 ± 8.3 mM/l, P = 0.0733) however, insulin AUC were significantly elevated (PG: 157.9 ± 73.4 μU/ml; C: 53.1 ± 61.8 μU/ml, P < 0.0462) in the propylene glycol compared to the water treated control group (Figure 3).

Characteristics of lambs at birth

The weight of lambs at birth was significantly affected by treatment, with lambs born to mothers fed propylene glycol being heavier (P < 0.05) than those born to control ewes given water (Table 1). Also, as expected, single lambs were heavier than twin lambs and male lambs were heavier than female lambs (data not shown). Lambs born to ewes treated with propylene glycol had higher (P < 0.001) glucose concentrations compared with lambs born to ewes from the control group, but fetal IGF-I concentrations were not different between groups (Table 1). There was no difference (P > 0.05) between the treatment groups for any of the body dimension measurements, but the ponderal index was significantly affected by treatment and gender, and there was a treatment-by-gender interaction with male lambs from propylene glycol treated ewes having a higher ponderal index than male lambs from control ewes (Table 1). Treatment did not significantly affect systolic (PG: 115.5 ± 9.9 mmHg; C 109.3 ± 7.8 mmHg), diastolic (PG: 84.0 ± 10.3 mmHg; C 77.1 ± 8.1 mmHg), mean (PG: 98.6 ± 10.6 mmHg; C 89.5 ± 7.6 mmHg) blood pressure or heart rate (PG: 165.5 ± 13.4 beats/min; C 164.4 ± 12.0 beats/min, P > 0.05) at birth.

Lambs born to mothers treated with propylene glycol had faster (P = 0.03) growth rates up to 6 weeks of age compared to lambs from water treated ewes (Table 1). Lambs from both groups were slaughtered at a similar (P > 0.05) weight (carcass weights were similar; Table 1); however, the offspring of ewes fed high glycaemic meals (propylene glycol) reached this weight at a younger age (P = 0.04) compared with control lambs (Table 1). There were no significant differences found for carcass weight (PG: 20.59 ± 0.55 kg; C: 20.02 ± 0.51 kg, P > 0.5) or conformation (P > 0.50) at slaughter between the two groups.


This study has found that high glycaemic intakes (analogous to snacking on high glycaemic foods) in the last trimester of pregnancy in ewes, giving transient elevations in glucose concentrations resulted in increased birthweight, basal plasma glucose concentrations and faster postnatal growth rates of their offspring.

It has been hypothesised that in humans high maternal blood glucose concentrations, as a result of diabetes, leads to an increase in nutrient transfer to the fetus.27 Fetal hyperglycaemia, then increases fetal pancreatic insulin secretion and subsequent fetal growth28, which can lead to complications in pregnancy.29 We have recently found that among women with gestational diabetes, commencement of the diabetic diet early in pregnancy which is isoenergetic with low glycaemic index foods for the carbohydrate component, was associated with less frequent macrosomia, when compared with late commencement.30 There is also an association between maternal glucose and fetal growth in women who do not have diabetes11,28 and eating primarily high glycaemic carbohydrates results in feto-placental overgrowth,10,31. In this study, we have now demonstrated that short duration, high glycaemic intake during late gestation that causes transient elevations in glucose and insulin concentrations, compared to the control ewes, had substantial effects to increase offspring birthweight and postnatal growth rates.

Women who were randomised to the high glycaemic diet delivered larger infants that were both heavier and larger in size.31 Our study is in agreement with this finding, as lambs born to ewes on a high gycaemic intake delivered heavier lambs with a higher ponderal index than control lambs (Table 1). This suggests that our animal model has relevance for investigation of fetal overgrowth mechanisms in humans.

We found that offspring born to ewes treated with propylene glycol in the last trimester of pregnancy had higher basal plasma glucose concentrations at birth, which could indicate impairment of the carbohydrate metabolism. These findings are in agreement with clinical investigations, which found that offspring born to mothers predisposed to gestational diabetes had elevated frequencies of impaired glucose tolerance.32 Additionally, offspring of rats displayed long-term alterations of glucose tolerance because of the induction of maternal gestational hyperglycaemia, which can lead to fetal and neonatal hyperinsulinism.33,34 An additional issue is that large for gestational age offspring, of diabetic mothers, are at significant risk of developing metabolic syndrome, which predisposes individuals to diabetes and cardivascular disease in childhood35 and adulthood.36 One of the criteria established for metabolic syndrome in this study was hypertension. In our study, we measured blood pressure in all lambs at birth, but found no significant differences (P > 0.05) between the two groups. Maternal undernutrition has been found to be associated with increased neonatal blood pressure in some studies,37,38 although others have found no such effect.39,40 However, it is possible that differences in blood pressure may not become apparent until later in life. We found that the high glycaemic intake in the last trimester of pregnancy resulted in offspring with faster rates of growth up until 12 weeks of age and reached their slaughter weight of about 40 kg earlier than the control lambs. We hypothesise that altered programming of fetal carbohydrate metabolism may also occur resulting in a persistence of the accelerated growth postnatally, even though the stimulus of maternal hyperglycaemia has been removed.

The limitations of this study are that we measured blood pressure in neonates and not in later life, it is possible that blood pressure changes may become evident in adolescence or adulthood (as discussed above). While we did not closely monitor the postnatal nutrition of the lambs, we feel that their diets were standardised as they were kept together in the same field with equal access to the dame diet. The strengths of this study are that it is a well-controlled randomised experiment with very good numbers (104 mothers and 150 offspring). Such a study would ethically and practically be difficult to perform on human pregnancy.

To our knowledge, there have been no previous animal studies carried out to investigate the effect of short duration high glycaemic intakes in the third trimester of pregnancy and its effects on offspring birthweight and growth rates. Our study shows for the first time, in a sheep model, that this resulted in an increased birthweight, basal plasma glucose concentrations and a faster postnatal growth rate in the offspring. Our hypothesis is that maternal hyperglycaemia stimulates fetal insulin production, which has a positive effect on fetal growth. There is evidence that maternal hyperglycaemia can result in chronic fetal hyperglycaemia and hyperinsulinaemia, which increases fetal fat mass and leptin synthesis within the fetal fat deposits.13

We conclude that our animal model has relevance for the investigation of the effects of transient maternal hyperglycaemia on offspring development and health. Altering the source and pattern of intake of maternal dietary carbohydrate may prove valuable in the management of pregnancies at risk for fetal overgrowth, trauma at parturition and possibly in the subsequent control of childhood obesity.

Disclosure of interests

The authors have no conflict of interest in publishing this paper.

Contribution to authorship

NS helped in the experimental design, performed the experiment, analysed and interpreted the data and wrote the paper. KQ carried out the statistical analysis and drafted the paper. FM, PL and AE equally conceived and designed the experiment, interpreted the data and drafted the paper.

Details of ethics approval

This randomised controlled trial was approved by the UCD Animal Research Ethics Committee. All experimental procedures involving animals were licensed by the Department of Health and Children, Ireland, in accordance with the Cruelty to Animals Act (Ireland 1897) and European Community Directive 86/609/EC.


NS was in receipt of an Embark Postgraduate Research Scholarship from the Irish Research Council for Science Engineering and Technology (IRCSET) and the work was funded by a seed fund grant from the UCD School of Agriculture Food Science and Veterinary Medicine.

We thank S Lott, P Quinn and P Duffy for assistance, care and management of the animals. We thank D Tenten and C Groot for their help in carrying out the experiment. We also thank P Furney and M Garrett for their help with the hormone assays.

1. Abrams BF,Laros RK Jr. Prepregnancy weight, weight gain, and birth weightAm J Obstet GynecolYear: 198615450393953698
2. Frentzen B,Dimperio D,Cruz A. Maternal weight gain:effect on infant birth weight among overweight and average-weight low-income womenAm J Obstet GynecolYear: 1988159111473189444
3. Johnson JW,Longmate JA,Frentzen B. Excessive maternal weight and pregnancy outcomeAm J Obstet GynecolYear: 199216735370 discussion 70–72. 1497038
4. Mahony R,Foley M,McAuliffe F,O’Herlihy C. Maternal weight characteristics influence recurrence of fetal macrosomia in women with normal glucose toleranceAust NZ J Obstet GynaecolYear: 200747399401
5. Sultan AH,Kamm MA,Hudson CN,Bartram CI. Third degree obstetric anal sphincter tears: risk factors and outcome of primary repairBr Med JYear: 1994308887918173367
6. Ecker JL,Greenberg JA,Norwitz ER,Nadel AS,Repke JT. Birth weight as a predictor of brachial plexus injuryObstet GynecolYear: 19978964379166293
7. Geary M,McParland P,Johnson H,Stronge J. Shoulder dystocia––is it predictable?Eur J Obstet Gynecol Reprod BiolYear: 19956215187493701
8. Baird J,Fisher D,Lucas P,Kleijnen J,Roberts H,Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesityBr Med JYear: 200533192916227306
9. Eriksson J,Forsen T,Osmond C,Barker D. Obesity from cradle to graveInt J Obes Relat Metab DisordYear: 200327722712833117
10. Clapp JF III. Maternal carbohydrate intake and pregnancy outcomeProc Nutr SocYear: 200261455012008645
11. Metzger BE,Lowe LP,Dyer AR,Trimble ER,Chaovarindr U,Coustan DR,et al. Hyperglycemia and adverse pregnancy outcomesN Engl J MedYear: 20083581991200218463375
12. Moses RG,Luebcke M,Davis WS,Coleman KJ,Tapsell LC,Petocz P,et al. Effect of a low-glycemic-index diet during pregnancy on obstetric outcomesAm J Clin NutrYear: 2006848071217023707
13. McMillen IC,Muhlhausler BS,Duffield JA,Yuen BS. Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birthProc Nutr SocYear: 2004634051215373950
14. Hererra E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetusEur J Clin NutrYear: 200054Suppl 1S475110805038
15. Knopp RH. Hormone-mediated changes in nutrient metabolism in pregnancy: a physiological basis for normal fetal developmentAnn NY Acad SciYear: 1997817251719239194
16. Boden K. Fuel metabolism in pregnancy and in gestational diabetes mellitusObstet Gynecol Clin North AmYear: 1996231108684772
17. Tieu J,Crowther CA,Middleton P. Dietary advice in pregnancy for preventing gestational diabetes mellitusCochrane Database Syst RevYear: 20082CD00667418425961
18. Formigoni A,Cornil MC,Prandi A,Mordenti A,Rossi A,Portetelle D,et al. Effect of propylene glycol supplementation around parturition on milk yield, reproduction performance and some hormonal and metabolic characteristics in dairy cowsJ Dairy ResYear: 19966311248655735
19. Studer VA,Grummer RR,Bertics SJ,Reynolds CK. Effect of prepartum propylene glycol administration on periparturient fatty liver in dairy cowsJ Dairy SciYear: 199376293198227621
20. Barry JS,Anthony RV. The pregnant sheep as a model for human pregnancyTheriogenologyYear: 200869556717976713
21. Robinson JJ. Land RB,Robinson DWNutritional requirements of the pregnant and lactation eweGenetics of reproduction in sheepYear: 1985LondonButterworths36170 editors.
22. Swali A,Wathes DC. Influence of primiparity on size at birth, growth, the somatotrophic axis and fertility in dairy heifersAnim Reprod SciYear: 20071021223617097838
23. Krieter DH,Fink E,Bonner G,You HM,Eisenhauer T. Anaphylactoid reactions during haemodialysis in sheep are associated with bradykinin releaseNephrology Dial TransplantYear: 19951050913
24. Bodey AR,Young LE,Bartram DH,Diamond MJ,Michell AR. A comparison of direct and indirect (oscillometric) measurements of arterial blood pressure in anaesthetised dogs, using tail and limb cuffsRes Vet SciYear: 19945726597871243
25. Chow PK,Ng TH,Heng D,Mack PO. A simple method of blood pressure measurement in the pig using a neonatal cuffAnn Acad Med SingaporeYear: 199928151910374020
26. Oliver MH,Hawkins P,Breier BH,Van Zijl PL,Sargison SA,Harding JE. Maternal undernutrition during the periconceptual period increases plasma taurine levels and insulin response to glucose but not arginine in the late gestational fetal sheepEndocrinologyYear: 20011424576911564726
27. Pedersen J. Weight and length at birth of infants of diabetic mothersActa EndocrinolYear: 1954163304213206643
28. Scholl T. Maternal glucose concentration influences fetal growth, gestation, and pregnancy complicationsAm J EpidemiolYear: 20011545142011549556
29. Jovanovic-Peterson L,Peterson CM,Reed GF,Metzger BE,Mills JL,Knopp RH,et al. Maternal postprandial glucose levels and infant birth weight: the Diabetes in Early Pregnancy Study. The National Institute of Child Health and Human Development––Diabetes in Early Pregnancy StudyAm J Obstet GynecolYear: 1991164103111986596
30. Foley M,Sheridan C,Mcauliffe F,Coffey M,Kinsley B,Firth R. To reduce the incidence of macrosomia, women with a history of gestational diabetes should be treated from early pregnancy without re-screeningAm J Obstet GynaecolYear: 2006196S170
31. Clapp J. Effect of dietary carbohydrate on the glucose and insulin response to mixed caloric intake and exercise in both nonpregnant and pregnant womenDiabetes CareYear: 199821Suppl 2B107129704236
32. Silverman BL,Metzger BE,Cho NH,Loeb CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinismDiabetes CareYear: 19951861178585997
33. Aerts L,Holemans K,Van Assche FA. Maternal diabetes during pregnancy: consequences for the offspringDiabetes Metab Res RevYear: 1990614767
34. Bihoreau MT,Ktorza A,Kinebanyan MF,Picon L. Impaired glucose homeostasis in adult rats from hyperglycemic mothersDiabetesYear: 198635979843527828
35. Boney CM,Verma A,Tucker R,Vohr B. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitusPediatricsYear: 2005115e290615741354
36. Reaven GM. Role of insulin in human diseases. Banting LectureDiabetesYear: 1988371590607
37. Edwards LJ,McMillen IC. Maternal undernutrition increases arterial blood pressure in the sheep fetus during late gestationJ PhysiolYear: 20015335617011389212
38. Gardner DS,Pearce S,Dandrea J,Walker R,Ramsay MM,Stephenson T,et al. Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheepHypertensionYear: 2004431290615078864
39. Laor A,Stevenson DK,Shemer J,Gale R,Seidman DS. Size at birth, maternal nutritional status in pregnancy, and blood pressure at age 17: population based analysisBMJYear: 1997315449539284660
40. Webb AL,Conlisk AJ,Barnhart HX,Martorell R,Grajeda R,Stein AD. Maternal and childhood nutrition and later blood pressure levels in young Guatemalan adultsInt J EpidemiolYear: 20053489890415894592


[Figure ID: fig01]
Figure 1 

CONSORT flowchart.

[Figure ID: fig02]
Figure 2 

Glucose and insulin concentrations (mean ± SEM) on day 109 of gestation in ewes administered propylene glycol (n = 12) or water (n = 12) daily from day 98 of gestation. Ewes received 100 mls of propylene glycol (PG) or water (control) at 8.00 and again at 16:00 hours. Grass silage was fed ad libitum and replenished as shown and a concentrate meal was fed as shown. The glucose and insulin response to propylene glycol or water was calculated as area under the curve for the 2 hours post administration (shaded areas).

[Figure ID: fig03]
Figure 3 

Glucose and insulin concentrations (mean ± SEM) on day 140 of gestation in ewes administered propylene glycol (n = 12) or water (n = 12) daily from day 98 of gestation. Ewes received 100 mls of propylene glycol (PG) or water (control) at 7.30 and again at 15.30 hours. Grass silage was fed ad libitum and replenished as shown and a concentrate meal was fed as shown. The glucose and insulin response to propylene glycol or water was calculated as area under the curve for the 2 hours post administration (shaded areas).

[TableWrap ID: tbl1] Table 1 

Characteristics (mean ± 95% confidence interval) of lambs born to ewes fed 100 ml propylene glycol (PG) or 100 ml water (control) twice per day from day 98 of gestation to term (about day 147)

Variables Propylene glycol Water P-value
Gestation length (days) 147.9 ± 0.39 (n = 51) 147.6 ± 0.47 (n = 53) T: 0.1917
Birthweight (kg) 5.27 ± 0.22 (n = 70) 5.01 ± 0.02 (n = 80) T: 0.0324
Birth glucose (mM/l) 3.88 ± 0.57 (n = 61) 2.87 ± 0.33 (n = 76) T: 0.001
Birth IGF-I (pg/ml) 629.8 ± 240.3 (n = 70) 774.8 ± 337.9 (n = 80) T: 0.253
Height (cm) 36.66 ± 0.61 (n = 58) 36.85 ± 0.63 (n = 78) T: 0.7628
Thoracic circumference (cm) 39.7 ± 0.8 (n = 58) 39.0 ± 0.8 (n = 78) T: 0.1145
Ponderal index* T: 0.0427
Male 119.8 ± 8.4 (n = 28)** 97.4 ± 5.5 (n = 45)*** G: 0.0372
Female 97.2 ± 7.1 (n = 30)*** 105.2 ± 7.1 (n = 33)*** T × G: 0.0001
Growth rate 0 to 6 weeks (kg/day) 0.36 ± 0.18 (n = 55) 0.33 ± 0.02 (n = 55) T: 0.0358
Growth rate 0 to12 weeks (kg/day) 0.31 ± 0.02 (n = 51) 0.29 ± 0.02 (n = 60) T: 0.0022
Age at slaughter (days) 166.0 ± 13.2 (n = 35) 183.4 ± 13.8 (n = 36) T: 0.0394
Carcass weight at slaughter (kg) 20.6 ± 0.55 (n = 35) 20.0 ± 0.51 (n = 36) T: 0.1478

Probabilities are given for the effect of Treatment (T) or Gender (G) or their interaction (T × G). Where no probabilities are given for G or T × G they were not significant (P > 0.05). However, there was an effect (P < 0.001) of G and litter size (singleton versus twin lambs) on birthweight but there was no interactions (P > 0.05).

*Ponderal index = (birthweight/heights × 100)3.

**,***Values within variables with no common superscripts differ (P < 0.05).

Article Categories:
  • Basic science

Keywords: Birthweight, fetal programming, maternal nutrition.

Previous Document:  Counter regulation of the high affinity IgE receptor, FcepsilonRI, on human airway dendritic cells b...
Next Document:  Choice and birth method: mixed-method study of caesarean delivery for maternal request.