Document Detail

Transient increase in homocysteine but not hyperhomocysteinemia during acute exercise at different intensities in sedentary individuals.
Jump to Full Text
MedLine Citation:
PMID:  23236449     Owner:  NLM     Status:  MEDLINE    
Considering that hyperhomocysteinemia is an independent risk factor for cardiovascular disease, the purpose of this study was to determine the kinetics of serum homocysteine (tHcy) and the vitamins involved in its metabolism (folates, B(12), and B(6)) in response to acute exercise at different intensities. Eight sedentary males (18-27 yr) took part in the study. Subjects were required to complete two isocaloric (400 kcal) acute exercise trials on separate occasions at 40% (low intensity, LI) and 80% VO(2peak) (high intensity, HI). Blood samples were drawn at different points before (pre4 and pre0 h), during (exer10, exer20, exer30, exer45, and exer60 min), and after exercise (post0, post3, and post19 h). Dietary, genetic, and lifestyle factors were controlled. Maximum tHcy occurred during exercise, both at LI (8.6 (8.0-10.1) µmol/L, 9.3% increase from pre0) and HI (9.4 (8.2-10.6) µmol/L, 25.7% increase from pre0), coinciding with an accumulated energy expenditure independent of the exercise intensity. From this point onwards tHcy declined until the cessation of exercise and continued descending. At post19, tHcy was not different from pre-exercise values. No values of hyperhomocysteinemia were observed at any sampling point and intensity. In conclusion, acute exercise in sedentary individuals, even at HI, shows no negative effect on tHcy when at least 400 kcal are spent during exercise and the nutritional status for folate, B(12), and B(6) is adequate, since no hyperhomocysteinemia has been observed and basal concentrations were recovered in less than 24 h. This could be relevant for further informing healthy exercise recommendations.
Eduardo Iglesias-Gutiérrez; Brendan Egan; Ángel Enrique Díaz-Martínez; José Luis Peñalvo; Antonio González-Medina; Pablo Martínez-Camblor; Donal J O'Gorman; Natalia Úbeda
Related Documents :
23217359 - Effect of speed on the upper and contralateral lower limb coordination during gait in i...
1533989 - Decreased plasma atriopeptin response to volume-overloading maneuvers and exercise afte...
24297989 - Effectiveness of foot and ankle exercise programs on reducing the risk of falling in ol...
1737669 - Enhanced release of atrial natriuretic factor during exercise-induced myocardial ischae...
9174249 - Prostaglandin uptake and catabolism by the choroid plexus during development in sheep.
2331039 - Relation of plasma norepinephrine and sympathetic traffic during hypotension in humans.
21364489 - Determinants of expiratory flow limitation in healthy women during exercise.
25068429 - Cardiopulmonary exercise testing prior to myeloablative allo-sct: a feasibility study.
9093539 - Preconditioning preserves mitochondrial function and glycolytic flux during an early pe...
Publication Detail:
Type:  Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't     Date:  2012-12-07
Journal Detail:
Title:  PloS one     Volume:  7     ISSN:  1932-6203     ISO Abbreviation:  PLoS ONE     Publication Date:  2012  
Date Detail:
Created Date:  2012-12-13     Completed Date:  2013-06-11     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  101285081     Medline TA:  PLoS One     Country:  United States    
Other Details:
Languages:  eng     Pagination:  e51185     Citation Subset:  IM    
Department of Pharmaceutical and Food Sciences, CEU San Pablo University, Madrid, Spain.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Cross-Over Studies
Exercise / physiology*
Homocysteine / blood*,  metabolism
Oxygen Consumption / physiology
Sedentary Lifestyle*
Statistics, Nonparametric
Time Factors
Reg. No./Substance:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): PLoS One
Journal ID (iso-abbrev): PLoS ONE
Journal ID (publisher-id): plos
Journal ID (pmc): plosone
ISSN: 1932-6203
Publisher: Public Library of Science, San Francisco, USA
Article Information
Download PDF
Copyright: 2012 Iglesias-Gutiérrez et al
Received Day: 17 Month: 7 Year: 2012
Accepted Day: 30 Month: 10 Year: 2012
collection publication date: Year: 2012
Electronic publication date: Day: 7 Month: 12 Year: 2012
Volume: 7 Issue: 12
E-location ID: e51185
PubMed Id: 23236449
ID: 3517465
Publisher Id: PONE-D-12-21594
DOI: 10.1371/journal.pone.0051185

Transient Increase in Homocysteine but Not Hyperhomocysteinemia during Acute Exercise at Different Intensities in Sedentary Individuals Alternate Title:Homocysteine and Exercise in Sedentary Individuals
Eduardo Iglesias-Gutiérrez1*¤a
Brendan Egan2¤b
Ángel Enrique Díaz-Martínez3
José Luis Peñalvo4
Antonio González-Medina1
Pablo Martínez-Camblor5
Donal J. O’Gorman2
Natalia Úbeda1
Paul McNeiledit1 Role: Editor
1Department of Pharmaceutical and Food Sciences, CEU San Pablo University, Madrid, Spain
2Centre for Preventive Medicine, School of Health and Human Performance, Dublin City University, Dublin, Ireland
3Sports Medicine Center, Clinical Laboratory, Higher Council for Sports, Madrid, Spain
4Department of Cardiovascular Epidemiology and Population Genetics, National Center for Cardiovascular Research (CNIC), Madrid, Spain
5Biosanitary Research Office of Asturias, Foundation for Asturias Promotion of Applied Scientific Research and Technology (FICYT), Oviedo, Spain
Medical College of Georgia, United States of America
Correspondence: * E-mail:
[conflict] Competing Interests: The authors have declared that no competing interests exist.
Contributed by footnote: Conceived and designed the experiments: BE DJO EI-G NÚ. Performed the experiments: NÚ EI-G BE DJO ÁED-M AG-M. Analyzed the data: EI-G NÚ BE DJO. Contributed reagents/materials/analysis tools: EI-G NÚ BE DJO ÁED-M JLP PM-C. Wrote the paper: EI-G NÚ.
¤aCurrent address: Department of Functional Biology (Area of Physiology), University of Oviedo, Oviedo, Spain
¤bCurrent address: Institute for Sport and Health, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland


The response to exercise of risk factors for chronic and degenerative diseases needs to be fully characterized before exercise can be most effectively prescribed as a preventive tool [1]. Hyperhomocysteinemia has emerged as an independent risk factor for cardiovascular disease (CVD), via endothelial dysfunction, oxidative stress mechanisms and inflammatory vascular processes [2], [3], [4], [5]. It is well known that plasma homocysteine concentration (tHcy) is inversely associated with plasma concentrations of folate and vitamins B12 and B6[6]. Furthermore, tHcy is strongly influenced by the intake of methionine, folate, vitamin B12, and vitamin B6, as well as by other dietary factors, such as animal protein, coffee and alcohol. Genetic predisposition, age, gender, medication use, and lifestyle factors such as smoking, also influence tHcy [7]. However, the impact of physical activity on tHcy remains unclear.

A lack of consensus exists based on previous studies, which appears to be related to heterogeneity in the experimental design and the lack of control of confounding variables [8], [9], [10]. Additionally, those studies that have analyzed the effect of an acute bout of exercise have examined tHcy only before and after exercise, and no information is available regarding the kinetics of tHcy during exercise.

Few articles have analyzed the effects of acute exercise on tHcy among sedentary individuals [11], [12], [13], despite the potential importance for public health of hyperhomocysteinemia and sedentarism. A recent survey on sport and physical activity in the European Union [14] reported that 60% of EU citizens either never play sport or only do so rarely (one to three times per month or less). Similarly, 34% of EU citizens affirm that they are either physically inactive or occasionally active [14]. Physical inactivity is considered an independent risk factor for CVD [15], [16], and acute aerobic exercise has been associated with transiently increasing CVD risk by inducing platelet aggregation and thrombosis [17]. Therefore, a large amount of sedentary people that seldom performs a single bout of exercise, could be at a higher CVD risk.

We hypothesized that tHcy would increase linearly in response to acute exercise in sedentary individuals, reaching values of hyperhomocysteinemia by the end of high intensity exercise. To test this hypothesis, we analyzed the complete tHcy kinetics in response to high and low intensity exercise in sedentary individuals, controlling dietary, genetic, and lifestyle factors. Surprisingly, our results revealed that, at both intensities, maximum tHcy occurred during exercise, coinciding with similar accumulated energy expenditure and no values of hyperhomocysteinemia were observed.

Subjects and Methods
Ethics Statement

All experimental procedures were approved by the Dublin City University Research Ethics Committee in accordance with the Declaration of Helsinki. All participants gave written informed consent.

Experimental Design

In a randomized crossover design, subjects were required to complete two isocaloric acute exercise trials, consisting of cycle exercise at 40% (low intensity, LI) and 80% (high intensity, HI) VO2peak, in random order separated by at least one week. Seven days before the first experimental trial, the power outputs required to elicit 40% and 80% VO2peak were verified. Each exercise bout required the participants to expend 400 kcal, determined by indirect calorimetry monitored on a minute-by-minute basis [18]. It has been suggested that the intensity of exercise should be adapted to allow a minimum expenditure of 300 kcal in each exercise session for developing and maintaining cardiorespiratory fitness [19]. The duration of both exercise trials was different as the relative energy expenditure in kcal·min−1 was different between trials reflecting the divergent exercise intensities, and thus a longer time was required to expend 400 kcal during LI (69.9±4.0 vs. 36.0±2.2 min, LI vs. HI respectively, P<0.01).


Participants were recruited using flyers posted on campus and e-mail sent to the student and staff mailing lists. Prior to participation, each volunteer underwent a thorough medical screening to determine eligibility. Eight young males (18–27 yr) who were healthy, non-obese and had been physically inactive for at least 6 months, took part in the study as previously described [20].

Anthropometry and Aerobic Capacity Assessment

On their first visit, the participants had their body composition assessed and their peak oxygen uptake (VO2peak) determined at the Metabolic Physiology Research Unit.

Height and body mass (BM) were measured using a combined medical scale (model 778, Seca Ltd, Hamburgh, Germany; precision 0.1 cm for height and 0.1 kg for weight) and the body mass index (BMI) was calculated.

Body density was calculated by the method of Jackson & Pollock (1978) [21], based on the sum of seven skinfolds (triceps, subscapular, mid-axillary, pectoral, suprailiac, abdominal, thigh) measured with Harpenden skinfold calipers (Holtain Ltd., Crosswell, Crymych, Pembrokeshire, UK). Percentage body fat (%BF) was calculated using the equation of Siri (1961) [22].

VO2peakwas determined by indirect calorimetry (Vmax 29C, SensorMedics, Yorba Linda, CA, USA) using an incremental protocol on an electronically braked stationary cycle ergometer (Ergoline 900, SensorMedics).

Dietary Control

Participants were asked to keep a one-day food diary on the day prior to the first experimental trial and asked to repeat the content and pattern of dietary intake on the day preceding the second experimental trial. They were asked to abstain from caffeine and alcohol consumption for 24 h prior to testing, and none of them reported the use of vitamin supplements. Dietary records were analyzed using a nutrient analysis program (WISP, Tinuviel Software, UK) [23].

The dietary intake during each experimental trial was standardized in terms of food type and macronutrient composition, and individualized for each participant in terms of total energy content. The energy requirements were calculated using the Harris-Benedict equation [24], multiplied by a physical activity factor (1.4), and with 400 kcal added to account for the exercise trial [25]. Three meals, each with 30% of predicted total energy expenditure, were provided, with the remaining 10% energy supplied with an evening snack. In accordance with current Recommended Dietary Allowances (RDA) [26] and Acceptable Macronutrient Distribution Range (AMDR) [27], these meals were designed to provide 45–65%, 20–35%, and 10–35% of total energy intake from carbohydrate (CHO), fat and protein sources, respectively, as well as an adequate intake of folate, vitamin B12, and vitamin B6.

Blood Sampling

For the experimental trials subjects reported to the laboratory after an overnight fast and had a blood sample taken (pre4). Subjects then consumed a standardized breakfast and remained in the laboratory for 4 h, at which point they started the exercise bout. Immediately before exercise another blood sample was taken (pre0). Participants began then cycling on a stationary ergometer (cadence at 70–75 rpm) and continued until 400 kcal were expended. During exercise blood samples were drawn every 10 min for the first 30 min (exer10, exer20, and exer30), and every 15 min thereafter (exer45 and exer60) until exhaustion, via catheter placed in the antecubital vein. Sampling points were the same for both exercise trials, although samples at exer45 and exer60 were only taken during LI due to its longer duration. The total volume of blood taken during the trial was less than 40 ml. Another blood sample was drawn immediately (post0) and 3 h after the cessation of exercise (post3). During this 3 h of recovery, subjects remained in the laboratory and were permitted to consume only water ad libitum. After the post3 blood sample, subjects were provided with a standard meal, after which consumption they were free to leave the laboratory. Another meal and snack were provided to eat later that evening, and water intake was permitted to their satisfaction. No other food or beverages were allowed. The following morning subjects returned to the laboratory at the same time as the previous day, after an overnight fast, for a final blood sample taken at 19 h after the cessation of exercise (post19).

The procedure was identical for both exercise trials with the exception of the exercise intensity and, therefore, the duration of the exercise bout.

Blood samples (4 ml) were collected in vacutainers (No Additive (Z), Becton Dickinson, Franklin Lakes, NJ), kept at room temperature for 20 min, and then centrifuged at 3000 rpm for 15 min at 4°C. The serum was stored at −80°C for later analysis.

Biochemical Determinations

tHcy and serum vitamin B6 (Pyridoxal 5′-phosphate, PLP) were determined by HPLC using a commercially available kit (Chromsystems Instruments & Chemicals GmbH, Munich, Germany) and fluorescent detection, where a derivatization process of the sample takes place. Once the sample is prepared, 50 µl are injected into the HPLC and fluorescence is measured at 385 nm excitation and 515 nm emission for tHcy and at 370 nm excitation and 470 nm emission for vitamin B6.

Folate and vitamin B12 serum concentrations were measured using an ELECSYS system (Roche Diagnostics GmbH, D-68298 Mannheim, Germany) based on an electrochemiluminescence immunoassay (ECLIA).


Subjects were genotyped for C677T methylene tetrahydrofolate reductase (MTHFR) polymorphism. DNA was extracted from a muscle biopsy taken in rested state from a routine procedure in a previous study [20]. A phenol:chloroform:isoamyl alcohol (25∶24∶1) extraction [28] was performed, followed by purification, achieved with Microcon-100 microconcentrators (Millipore, Billerica, MA) by following the manufacturer’s instructions.

Genotype analyses were done by PCR-restriction fragment-length polymorphism analysis and then separately cleaved with HinfI restriction enzyme (Promega Corporation, Madison, WI). The restriction digest was analyzed by gel electrophoresis to identify each possible restriction fragment length polymorphism pattern characteristic of mutation as described by Frosst et al. (1995) [29].

Statistical Analysis

Normality of variables was tested using Shapiro Wilk’s test. In light of the results obtained, descriptive values are presented as medians and interquartile range in parenthesis and non-parametric methods were used.

Results about the distribution of tHcy values at every sampling point during low and high intensity exercise are presented as grouped box plots.

Differences between medians were analyzed using Mann-Whithey U test for independent samples (comparisons between exercise intensities) and Friedman test followed by Wilcoxon test for related variables (comparisons between sampling points at the same intensity).

In order to check the relationship among the different variables at each time point, a full correlation analysis was made by using Pearson correlation coefficient on the respective logarithmic transformation.

The level of significance was set at p<0.05 for all analyses; for multiple testing, Bonferroni correction was considered. Descriptive and analytical statistical analyses were performed using IBM® SPSS® Statistics (version 19) (Somers, NY).

Characteristic kinetic parameters (Maximum concentration, Cmax and Time to maximum concentration, Tmax) of tHcy, folate, vitamin B12, and vitamin B6 in serum were assessed by noncompartmental residual technique resolving each obtained curve into a series of exponential terms corresponding to the absorption, distribution, and elimination phases of the compound assuming apparent first-order rate processes, evidenced by linearity in the terminal portion of a semi-log plot. The parameters were calculated with PK Solutions 2.0 Noncompartmental Pharmacokinetics Data Analysis software (Summit Research Services, Montrose, CO, USA).


Anthropometric characteristics (height, body mass, BMI, body fat) and aerobic capacity (VO2peak) of sedentary volunteers are shown in Table 1.

None of the individuals assessed was TT homozygote for C677T MTHFR polymorphism, while 75% (n = 6) were heterozygous (CT) and 25% were CC homozygotes.

Serum tHcy was not related to C677T MTHFR genotypes at any sampling point or exercise intensity.

The graphic representation of the serum clearance kinetics of tHcy, together with calculated Cmax and Tmax in response to LI and HI, are shown in Figure 1. Box plots (Figure 2) were used to represent the distribution of tHcy values at every sampling point during LI and HI.

No statistical differences in tHcy were found at baseline (pre4 and pre0) between LI and HI (pre4∶8.1 (7.0–8.3) vs. 8.1 (7.2–10.0) µmol/L; pre0∶7.8 (7.0–8.3) vs. 7.4 (6.3–9.6) µmol/L).

A significant increase in tHcy was observed during HI, reaching Cmax after 25 min of exercise (9.4 (8.2–10.6) µmol/L). This represents 1.9 µmol/L higher than pre0 or a 25.7% increase. tHcy started decreasing progressively during the HI trial and continued after the cessation of exercise. At post19, tHcy was not different to baseline (LI, post19∶6.8 (6.3–8.2) µmol/L; HI, post19∶7.5 (6.8–8.2)). No values of hyperhomocysteinemia (tHcy>15 µmol/L) [5], [30] were observed at any sampling point.

tHcy response to LI was similar to that observed for HI and no statistically significant differences were observed between values obtained at the same sampling points in both trials. However, the increase observed in tHcy during LI was lower, reaching Cmax (8.6 (8.0–10.1) µmol/L) after 37.5 min of exercise, 0.8 µmol/L higher than pre0 or a 9.3% increase. No statistically significant differences were found between sampling points during LI exercise.

No statistically significant differences were found for Cmax at HI vs. LI exercise.

Although Cmax and Tmax for tHcy were different at LI and HI, no statistically significant differences were found for the energy expenditure at Cmax between both intensities (272.4 vs. 217.0 kcal, respectively).

Table 2 shows the serum concentration of folate, vitamin B12, and vitamin B6 at every sample point, together with calculated Cmax and Tmax in response to LI and HI. No statistical differences were found between LI and HI for serum folate, vitamin B12, and vitamin B6 concentrations neither at baseline nor at any other sampling point. The serum concentration of the three vitamins were adequate at every sampling point (folate: >3.4 nmol/L; vitamin B12: >120 pmol/L; vitamin B6: >30 nmol/L) [31].

Serum folate concentration increased significantly during exercise. The increase was higher during LI compared to HI (Cmax: 44.8 nmol/L after 50 min vs. Cmax: 28.0 nmol/L after 20 min), although no significant differences were observed between trials. Folate concentration at post19 were not different from pre4, showing also a recovery from the baseline.

Vitamin B12 serum concentration decreased between pre4 and pre0 and during the first minutes of exercise, both for LI and HI. Then, its concentration increased continuously until the end of exercise, and serum concentration at post0 was significantly higher than at pre0 and exer10 for both intensities, reaching Cmax close to the end of exercise (LI: 422.2 pmol/L after 55 min; HI: 423.0 pmol/L after 30 min). Vitamin B12 concentration at post19 was not different from pre4.

Serum vitamin B6 concentration increased significantly during exercise. The increase was higher during LI compared to HI (Cmax: 201.8 nmol/L after 25 min vs. Cmax: 125.8 nmol/L after 25 min). After the cessation of exercise, vitamin B6 concentration diminished significantly reaching baseline again 19 h post-exercise.

The correlation analysis among the serum concentration of tHcy and the different vitamins analyzed showed a large variability and no relevant tendency was observed.

Energy, macronutrient, folate, vitamin B12, and vitamin B6 intake during the experimental trial days, compared to the RDA and AMDR [26], [27], are shown in Table 3. The dietary intake of the volunteers was in accordance with the proposed targets for energy (% of target intake: 91.9%), macronutrients (CHO: 103.1%; Proteins: 85.3%; Lipids: 72.7%), and vitamins (Folates: 228.4%; Vitamin B12∶ 686.0%; Vitamin B6∶ 420.0%).

No relevant tendency was observed in the correlation analysis between tHcy and the intake of folates, vitamin B12, and vitamin B6 intake in the different meals throughout the trial days.


This study constitutes a holistic approach to the kinetics and metabolism of tHcy, an independent risk factor for CVD, in response to acute exercise at different intensities in sedentary individuals. To our knowledge, this is the first investigation that shows data on the variation of tHcy during exercise, providing a complete perspective of the kinetics of this parameter. Understanding this response could be relevant in terms of further informing healthy exercise recommendations.

An interesting finding in the present study is the observation that in response to an acute bout of exercise tHcy increases and Cmax occurs during exercise. From this point onwards, tHcy declines until the cessation of exercise. Thus, the response of tHcy to acute exercise is not linear, but biphasic, as evidenced by an initial increase and subsequent decrease, although the basal concentration is not recovered until 19 h post-exercise. The previous studies that have evaluated the impact on tHcy of an acute bout of exercise have not accounted for the variations during exercise, so they can only observe a linear relationship between pre and post-exercise tHcy. Furthermore, contradictory and inconclusive results were obtained, since some of them found acute exercise to increase tHcy, while others described a decrease in this parameter, and others found no effect at all [9], [11], [13], [32], [33], [34], [35]. Therefore, the differences in the values measured after exercise by the variety of authors could be related to differences in the timing of post-exercise sample collection, which may in fact represent different periods in the recovery phase. Furthermore, we have observed that Cmax coincided with a particular quantity of energy expended, irrespective of exercise intensity, but not of the duration of exercise.

Consequently our results show that post-exercise tHcy depends on the timing of post-exercise sample collection and on the total energy expenditure during the exercise trial, which could partially explain the heterogeneity in the results obtained in previous studies.

This observation could also explain in part the higher resting tHcy observed in physically active versus sedentary people [31], [36], [37]. In these studies the time elapsed after the last training session prior the blood sample collection was not specified. Thus, the higher basal tHcy reported in physically active people may be through the repeated, but transient, increase during each successive exercise bout. This could determine a state of permanent postexercise recovery, as observed for other plasma biomarkers in response to exercise [38].

Nevertheless, a high interindividual variability in the kinetics of tHcy were observed (Figure 2), so it would be interesting to confirm these findings in a larger sample.

In the fasting state tHcy normally ranges from 5 to 15 µmol/L [39]. Thus, hyperhomocysteinemia has been defined as concentrations >15 µmol/L [5], [30]. We have found no values of hyperhomocysteinemia all over the exercise trials, irrespective of the intensity. However, this does not mean that the transient increase observed in tHcy is lacking of physiological relevance. A recent meta-analysis have found a 16% higher risk of ischemic heart disease in TT than CC for an average tHcy difference of 1.9 µmol/L [40]. This value coincides with the average increase in tHcy observed in our study in response to HI exercise (pre0 vs. Cmax). However, the increment in CVD risk reported by Wald et al. (2011) refers to a sustained elevation in tHcy throughout the lifespan, while our observation refers to an acute transient increase. Moderate acute elevations of tHcy through oral methionine load, also alter endothelial function in healthy adult humans [41], although it may be that the physiopathological consequences on CVD are different.

Several mechanisms have been proposed to explain the increase in tHcy post-exercise, when observed. Venta et al. (2009) [35] suggested that it is related to the transient reduction in renal blood flow and filtration that occurs after exercise. Other authors have proposed that the role of homocysteine as intermediate in amino acid synthesis after exercise induced muscle tissue damage, could also explain this increase [34], [36]. Unfortunately, neither mechanism explains the lack of a linear relationship between pre and post-exercise tHcy, or the decline during exercise at a time when the stimulus of exercise persists.

An alternative hypothesis is that the clearance observed for tHcy during exercise could be related to energy metabolism and substrate utilization. It is well known that substrate utilization changes during exercise in relation to the intensity and duration of the activity [42], and several authors have proposed a role of homocysteine in energy metabolism [31], [43]. As expected, we observed different substrate utilization profiles at LI vs. HI were observed throughout the exercise trials and at Tmax (RER, CHO and Lipid oxidation rate, and Total CHO and Lipid oxidized) [20]. However, no differences were found for Cmax at LI vs. HI, and the accumulated energy expenditure at Cmax was independent of the exercise intensity. Additionally, we have observed no correlation between tHcy and the serum concentration of vitamin B6 throughout the trials. In this sense, Crozier et al. (1994) [44], analyzing the kinetics of plasma PLP in response to exercise, postulate that the rise observed during exercise was not related to fuel provision.

Thus, in light of these results, no clear relationship can be established between tHcy kinetics during exercise and energy metabolism and fuel use, although further research is needed.

Furthermore, the predictors of tHcy may differ among populations according to their nutritional status. Folates, more than other B-vitamins, are essential to maintain safe homocysteine concentrations. An inverse relationship between tHcy and serum folate has been described, but only when the nutritional status for folic acid is adequate [45], [46], [47]. Despite the optimal folate status of the volunteers that took part in our study, an increase in tHcy was observed in response to exercise. So, in light of our results, adequate folate intake could be especially important for people that are seldom active, and who would be exposed to transient increases in tHcy.

In conclusion, acute exercise in young sedentary individuals transiently increases tHcy during exercise irrespective of the intensity, but does not result in hyperhomocysteinemia. Further research is needed to clarify the exact mechanism by which this increase occurs. Consequently, acute exercise, even of high intensity, has no negative effect on tHcy as an independent risk factor for CVD, when at least 400 kcal are spent during exercise and the nutritional status for folates is adequate. These results inform the response of a risk factor for CVD to acute exercise in sedentary people and are relevant for public health in terms of further informing healthy exercise recommendations.

We thank Dr. Pablo M. García-Rovés for his help on building bridges between two research groups.

This work was awarded First Prize at the XII edition of the National Prize for Research in Sports Medicine (Spain).

1. Bouchard C,, Blair SN,, Church TS,, Earnest CP,, Hagberg JM,, et al. (Year: 2012) Adverse metabolic response to regular exercise: is it a rare or common occurrence?PLoS One7: e3788722666405
2. Mangoni AA,, Woodman RJ, (Year: 2011) Homocysteine and cardiovascular risk an old foe creeps back. J Am Coll Cardiol58: 1034–103521867838
3. Moat SJ, (Year: 2008) Plasma total homocysteine: instigator or indicator of cardiovascular disease?Ann Clin Biochem45: 345–34818583617
4. Refsum H,, Ueland PM,, Nygard O,, Vollset SE, (Year: 1998) Homocysteine and cardiovascular disease. Annu Rev Med49: 31–629509248
5. Veeranna V,, Zalawadiya SK,, Niraj A,, Pradhan J,, Ference B,, et al. (Year: 2011) Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol58: 1025–103321867837
6. Selhub J, (Year: 1999) Homocysteine metabolism. Annu Rev Nutr19: 217–24610448523
7. Chrysohoou C,, Panagiotakos DB,, Pitsavos C,, Zeimbekis A,, Zampelas A,, et al. (Year: 2004) The associations between smoking, physical activity, dietary habits and plasma homocysteine levels in cardiovascular disease-free people: the ‘ATTICA’ study. Vasc Med9: 117–12315521701
8. Duncan GE,, Perri MG,, Anton SD,, Limacher MC,, Martin AD,, et al. (Year: 2004) Effects of exercise on emerging and traditional cardiovascular risk factors. Prev Med39: 894–90215475021
9. Herrmann M,, Schorr H,, Obeid R,, Scharhag J,, Urhausen A,, et al. (Year: 2003) Homocysteine increases during endurance exercise. Clin Chem Lab Med41: 1518–152414656035
10. Joubert LM,, Manore MM, (Year: 2006) Exercise, nutrition, and homocysteine. Int J Sport Nutr Exerc Metab16: 341–36117136938
11. Gelecek N,, Teoman N,, Ozdirenc M,, Pinar L,, Akan P,, et al. (Year: 2007) Influences of acute and chronic aerobic exercise on the plasma homocysteine level. Ann Nutr Metab51: 53–5817356255
12. Sotgia S,, Carru C,, Caria MA,, Tadolini B,, Deiana L,, et al. (Year: 2007) Acute variations in homocysteine levels are related to creatine changes induced by physical activity. Clin Nutr26: 444–44917582661
13. Zinellu A,, Sotgia S,, Caria MA,, Tangianu F,, Casu G,, et al. (Year: 2007) Effect of acute exercise on low molecular weight thiols in plasma. Scand J Med Sci Sports17: 452–45617651085
14. Eurobarometer (2010) Sport and physical activity. Brussels: TNS Opinion & Social.
15. Bijnen FC,, Caspersen CJ,, Mosterd WL, (Year: 1994) Physical inactivity as a risk factor for coronary heart disease: a WHO and International Society and Federation of Cardiology position statement. Bull World Health Organ72: 1–48131243
16. Yung LM,, Laher I,, Yao X,, Chen ZY,, Huang Y,, et al. (Year: 2009) Exercise, vascular wall and cardiovascular diseases: an update (part 2). Sports Med39: 45–6319093695
17. Bacon SL,, Pelletier R,, Lavoie KL, (Year: 2009) The impact of acute and chronic exercise on thrombosis in cardiovascular disease. Thromb Haemost101: 452–45919277404
18. Weir JB, (Year: 1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol109: 1–915394301
19. American College of Sports Medicine Position Stand (Year: 1998) The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc30: 975–9919624661
20. Egan B,, Carson BP,, Garcia-Roves PM,, Chibalin AV,, Sarsfield FM,, et al. (Year: 2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol588: 1779–179020308248
21. Jackson AS,, Pollock ML, (Year: 1978) Generalized equations for predicting body density of men. Br J Nutr40: 497–504718832
22. Siri WE (1961) Body composition from fluid spaces and density: Analysis of methods. In: Brozek J, Henschel A, editors. Techniques for measuring body composition. Wasington, DC: National Academy of Sciences, National Research Council.
23. Food Standards Agency (2002) McCance and Widdowson’s The Composition of Foods. London: RSC Publishing.
24. Harris JA, Benedict FG (1919) A biometric study of basal metabolism in man. Washington DC: Carnagie Institution of Washington.
25. Durnin JV (1996) Energy requirements: general principles. Eur J Clin Nutr 50 Suppl 1: S2–9; discussion 9–10.
26. Food Safety Authority of Ireland (1999) Recommended Dietary Allowances for Ireland. Dublin.
27. Food and Nutrition Board, Institute of Medicine of the National Academies (2005) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington D.C.: The National Academies Press.
28. Walsh DJ,, Corey AC,, Cotton RW,, Forman L,, Herrin GL Jr,, et al. (Year: 1992) Isolation of deoxyribonucleic acid (DNA) from saliva and forensic science samples containing saliva. J Forensic Sci37: 387–3951500889
29. Frosst P,, Blom HJ,, Milos R,, Goyette P,, Sheppard CA,, et al. (Year: 1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet10: 111–1137647779
30. Welch GN,, Loscalzo J, (Year: 1998) Homocysteine and atherothrombosis. N Engl J Med338: 1042–10509535670
31. Joubert LM,, Manore MM, (Year: 2008) The role of physical activity level and B-vitamin status on blood homocysteine levels. Med Sci Sports Exerc40: 1923–193118845970
32. Boreham CAG,, Kennedy RA,, Murphy MH,, Tully M,, Wallace WFM,, et al. (Year: 2005) Training effects of short bouts of stair climbing on cardiorespiratory fitness, blood lipids, and homocysteine in sedentary young women. Br J Sports Med39: 590–59316118293
33. Konig D,, Bisse E,, Deibert P,, Muller HM,, Wieland H,, et al. (Year: 2003) Influence of training volume and acute physical exercise on the homocysteine levels in endurance-trained men: interactions with plasma folate and vitamin B12. Ann Nutr Metab47: 114–11812743461
34. Real JT,, Merchante A,, Gomez JL,, Chaves FJ,, Ascaso JF,, et al. (Year: 2005) Effects of marathon running on plasma total homocysteine concentrations. Nutr Metab Cardiovasc Dis15: 134–13915871862
35. Venta R,, Cruz E,, Valcarcel G,, Terrados N, (Year: 2009) Plasma vitamins, amino acids, and renal function in postexercise hyperhomocysteinemia. Med Sci Sports Exerc41: 1645–165119568194
36. Borrione P,, Rizzo M,, Spaccamiglio A,, Salvo RA,, Dovio A,, et al. (Year: 2008) Sport-related hyperhomocysteinaemia: a putative marker of muscular demand to be noted for cardiovascular risk. Br J Sports Med42: 594–600
37. Murakami H,, Iemitsu M,, Sanada K,, Gando Y,, Ohmori Y,, et al. (Year: 2011) Associations among objectively measured physical activity, fasting plasma homocysteine concentration, and MTHFR C677T genotype. Eur J Appl Physiol111: 2997–300521451940
38. Henderson GC,, Krauss RM,, Fattor JA,, Faghihnia N,, Luke-Zeitoun M,, et al. (Year: 2010) Plasma triglyceride concentrations are rapidly reduced following individual bouts of endurance exercise in women. Eur J Appl Physiol109: 721–73020217117
39. Ueland PM,, Refsum H,, Stabler SP,, Malinow MR,, Andersson A,, et al. (Year: 1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem39: 1764–17798375046
40. Wald DS,, Morris JK,, Wald NJ, (Year: 2011) Reconciling the evidence on serum homocysteine and ischaemic heart disease: a meta-analysis. PLoS One6: e1647321311765
41. Bellamy MF,, McDowell IF,, Ramsey MW,, Brownlee M,, Bones C,, et al. (Year: 1998) Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation98: 1848–18529799203
42. Jeukendrup AE, (Year: 2003) Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem Soc Trans31: 1270–127314641041
43. Wang Z,, Pini M,, Yao T,, Zhou Z,, Sun C,, et al. (Year: 2011) Homocysteine suppresses lipolysis in adipocytes by activating the AMPK pathway. Am J Physiol Endocrinol Metab301: E703–71221750268
44. Crozier PG,, Cordain L,, Sampson DA, (Year: 1994) Exercise-induced changes in plasma vitamin B-6 concentrations do not vary with exercise intensity. Am J Clin Nutr60: 552–5588092090
45. González González MP,, Moreno Almazán L,, Cornide M,, García Rico E,, Alonso-Aperte E,, et al. (Year: 2005) Homocisteína, Folatos y Vitamina B12 y Cáncer Colorrectal. Estudio Caso Control en Humanos. Nutr HospXX: 28–29
46. Úbeda N,, Reyes L,, González-Medina A,, Alonso-Aperte E,, Varela-Moreiras G, (Year: 2011) Physiological changes in homocysteine metabolism in pregnancy: a longitudinal study in Spain. Nutrition27: 925–93021367581
47. Varela-Moreiras G,, Escudero JM,, Alonso-Aperte E, (Year: 2007) Homocisteína, vitaminas relacionadas y estilos de vida en personas de edad avanzada: estudio Séneca. Nutr Hosp22: 363–37017612379


[Figure ID: pone-0051185-g001]
doi: 10.1371/journal.pone.0051185.g001.
Figure 1  Serum homocysteine kinetics and calculated Cmax and Tmax at low and high intensity isocaloric exercise trials.

Solid line and black dots, Low intensity exercise (40% VO2peak); Dashed line and white dots, High intensity exercise (80% VO2peak). Data are presented as medians in the figure and medians (interquartile range) in the table. *Significant differences in high intensity exercise (P<0.05) between pre0 vs. exer10, exer20, exer30, and post0. †Significant differences in high intensity exercise (P<0.05) between post19 vs. exer10, 20, 30, post0, and post 3. LI: Low intensity exercise; HI: High intensity exercise; pre0: Blood sample immediately before exercise; exer10: Blood sample 10 min during exercise; exer20: Blood sample 20 min during exercise; exer30: Blood sample 30 min during exercise; post0: Blood sample immediately after exercise; post3: Blood sample 3 h after exercise; post19: Blood sample 19 h after exercise.

[Figure ID: pone-0051185-g002]
doi: 10.1371/journal.pone.0051185.g002.
Figure 2  Distribution of serum homocysteine concentration values in every sampling point at low and high intensity isocaloric exercise trials.

Open bars, Low intensity exercise (40% VO2peak); Grey bars, High intensity exercise (80% VO2peak). Open dots represent outliers. *Significant differences in high intensity exercise (P<0.05) between pre0 vs. exer10, exer20, exer30, and post0. †Significant differences in high intensity exercise (P<0.05) between post19 vs. exer10, 20, 30, post0, and post 3. pre4: Blood sample 4 h before exercise; pre0: Blood sample immediately before exercise; exer10: Blood sample 10 min during exercise; exer20: Blood sample 20 min during exercise; exer30: Blood sample 30 min during exercise; exer45: Blood sample 45 min during exercise; exer60: Blood sample 60 min during exercise; post0: Blood sample immediately after exercise; post3: Blood sample 3 h after exercise; post19: Blood sample 19 h after exercise.

[TableWrap ID: pone-0051185-t001] doi: 10.1371/journal.pone.0051185.t001.
Table 1  Characteristics of the subjects (n = 8).
Median IR
Height (m) 1.79 (1.74–1.81)
Body mass (kg) 79.4 (74.2–87.3)
BMI (kg·m−2) 25.0 (21.5–28.4)
Sum of 7 skinfolds (mm)a 124.8 (56.4–184.9)
%BFb 17.0 (6.7–24.8)
VO2peak (ml·kg−1·min−1) 38.0 (34.0–49.8)

aSum of 7 skinfolds: triceps, pectoralis, subscapular, abdominal, mid-axilary, suprailliac, and thigh.

bBody density was calculated by the Jackson and Pollock (1978) equation [21] and %BF was estimated using the Siri (1961) equation [22].

IR: Interquartile range; %BF: Percentage of body fat; VO2peak: Peak oxygen uptake.

[TableWrap ID: pone-0051185-t002] doi: 10.1371/journal.pone.0051185.t002.
Table 2  Serum folate, vitamin B12, and vitamin B6 concentration before, during, and after two acute isocaloric exercise trials at low and high intensity (LI, 40% VO2peak and HI, 80% VO2peak) in sedentary volunteers (n = 8).
Folate (nmol/L) Vitamin B12 (pmol/L) Vitamin B6 (pmol/L)
pre4 21.9 (15.1–32.1)a 20.5 (15.–30.9)b 412.2 (290.4–460.2)c 385.4 (295.2–511.2) 61.9 (36.8–137.3)f 52.5 (36.4–111.5)i
pre0 32.4 (16.0–38.8) 20.9 (13.7–39.6) 334.6 (246.8–438.2)d 349.4 (251.1–435.5) 119.5 (84.8–144.0) 94.3 (53.1–126.9)
exer10 25.1 (15.0–33.4) 26.0 (16.2–30.2) 299.8 (249.0–400.0) 343.2 (296.2–424.0) 139.4 (98.5–154.6) 105.2 (77.6–156.4)
exer20 29.9 (14.9–33.4) 23.7 (19.6–39.0) 340.6 (269.3–417.1) 368.5 (322.8–446.1) 169.7 (89.7–197.8)g 114.6 (59.9–155.3)
exer30 24.8 (14.9–37.8) 27.8 (16.8–38.3) 358.9 (280.1–428.1) 373.6 (321.6–461.8) 123.6 (92.4–175.1) 109.3 (68.8–172.8)
exer45 24.1 (15.9–44.4) 371.2 (290.8–430.5) 143.0 (85.9–202.0)
exer60 24.0 (15.8–55.2) 345.2 (243.4–427.9) 198.7 (81.7–218.6)
post0 26.3 (17.6–42.2) 25.6 (20.6–36.8) 422.2 (294.1–465.8)c 407.7 (327.0–434.4)e 135.8 (80.2–165.1) 104.1 (63.4–190.8)j
post3 24.3 (19.5–30.8) 21.3 (17.9–31.5) 423.2 (308.5–468.8)c 374.6 (297.5–399.4) 108.4 (84.6–135.9) 80.9 (52.9–154.0)
post19 21.7 (18.4–30.0) 21.7 (17.8–31.3) 418.6 (257.0–492.2) 363.2 (272.6–496.0) 92.8 (70.5–157.3)h 57.8 (39.6–137.4)k
Cmax 44.8 (17.6–62.6) 28.0 (21.8–41.9) 422.2 (328.5–449.4) 423.0 (328.5–449.4) 201.8 (125.6–218.9) 125.8 (81.2–193.4)
Tmax 50 (22–60) 20 (0–30) 55 (45–70) 30 (22–40) 25 (20–56) 25 (10–38)

Data are presented as Median (Interquartile range).

Significant difference (P<0.05) from: aexer20, exer60, and post0; bexer30; cpre0, exer10, exer20, exer30, exer45, and exer60; dpost19; epre0, exer10, and post3; fpre0, exer10, exer20, exer45, exer60, post0, and post3; gpost0, post3, and post19; hfrom exer20, exer60, and post0; iexer10, exer20, exer30, post0, and post3; jpre4, pre0, post3, and post19; kexer20, exer30, post0, and post3. HI: High intensity exercise; LI: Low intensity exercise; pre4: before exercise (4 h); pre0: immediately before exercise; exer10: during exercise (10 min); exer20: during exercise (20 min); exer30: during exercise (30 min); exer45: during exercise (45 min); exer60: during exercise (60 min); post0: immediately after exercise; post3: before exercise (3 h); post19: before exercise (19 h).

[TableWrap ID: pone-0051185-t003] doi: 10.1371/journal.pone.0051185.t003.
Table 3  Nutritional intake of volunteers (n = 8) during the experimental trial days, target energy intake, Recommended Dietary Allowances (RDA) and Acceptable Macronutrient Distribution Range (AMDR).
Intake Intake targetsa
Energy (MJ) 12.0 (11.0–12.2) 12.0–13.4
Carbohydrates (%E) 67.5 (64.2–69.8) 45–65
Lipids (%E) 19.0 (16.0–22.0) 20–35
Proteins (%E) 14.0 (13.0–14.8) 10–35
Folate (µg) 646.0 (177.0–683.0) 300
Vitamin B12 (µg) 22.7 (3.2–25.7) 1.4
Vitamin B6 (mg) 6.2 (1.8–6.5) 1.5

Data are presented as Median (Interquartile range).

aIntake targets: For Energy intake the energy requirements were calculated using the Harris-Benedict equation [24], multiplied by a physical activity factor (1.4), and with 400 kcal added to account for the energy expenditure during the exercise trial. For Macronutrients and vitamins, the Acceptable Macronutrient Distribution Range (AMDR) [27] and the Recommended Dietary Allowances (RDA) [26] were used, respectively.

%E: percent of energy intake.

Article Categories:
  • Research Article
Article Categories:
  • Biology
    • Biochemistry
      • Blood Chemistry
      • Metabolism
Article Categories:
  • Medicine
    • Cardiovascular
    • Hematology
    • Nutrition
      • Vitamins
    • Sports and Exercise Medicine

Previous Document:  Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombin...
Next Document:  Evaluating de Bruijn graph assemblers on 454 transcriptomic data.