Document Detail


Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1.
MedLine Citation:
PMID:  22720931     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
The objective of this study was to investigate the transcriptional regulation of lipid synthesis by sterol regulatory element binding protein-1 (SREBP-1) in bovine mammary epithelial cells. In the current study, bovine mammary epithelial (MAC-T) cells cultured in insulin- and prolactin-containing medium were treated with a transfection reagent as control, a nontargeting small interfering (si)RNA sequence (100nM) as a negative control, or an SREBP-1-specific siRNA (100nM) for 48h. The mRNA expression of SREBP-1 was decreased more than 90% by siRNA. Precursor and mature forms of SREBP-1 protein were undetectable in cells treated with SREBP-1 siRNA. Fatty acid synthesis and fatty acid uptake, measured using isotope incorporation, were reduced significantly in cells treated with SREBP-1 siRNA compared with controls. Transcript abundance of acyl-CoA synthetase short-chain family member 2, acetyl-CoA carboxylase, fatty acid synthetase, and isocitrate dehydrogenase 1 (key enzymes of de novo lipogenesis) was decreased by 40 to 65% with SREBP-1 siRNA, in agreement with acetate incorporation data. The mRNA levels of fatty acid binding protein 3 and stearyl-CoA desaturase 1 (proteins responsible for intracellular fatty acid trafficking and long-chain fatty acid modification) were decreased 76 and 60%, respectively, by SREBP-1 siRNA treatment compared with controls. The mRNA expression of mitochondrial glycerol-3-phosphate acyltransferase and lipin 1 (involved in triglyceride synthesis) was significantly decreased in cells treated with SREBP-1 siRNA compared with control cells. However, the expression of milk fat globule membrane proteins measured did not differ among treatments. In conclusion, SREBP-1 plays an important role in integrated regulation of lipid synthesis in bovine mammary epithelial cells through regulation of key enzymes.
Authors:
L Ma; B A Corl
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of dairy science     Volume:  95     ISSN:  1525-3198     ISO Abbreviation:  J. Dairy Sci.     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-06-22     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  2985126R     Medline TA:  J Dairy Sci     Country:  United States    
Other Details:
Languages:  eng     Pagination:  3743-55     Citation Subset:  IM    
Copyright Information:
Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Affiliation:
Department of Dairy Science, Virginia Tech, Blacksburg 24061.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Performance and welfare of high-yielding dairy cows subjected to 5 or 8 cooling sessions daily under...
Next Document:  The fatty acid profile of subcutaneous and abdominal fat in dairy cows with left displacement of the...