Document Detail


Toxicity of lead (Pb) to freshwater green algae: Development and validation of a bioavailability model and inter-species sensitivity comparison.
MedLine Citation:
PMID:  25089923     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Scientifically sound risk assessment and derivation of environmental quality standards for lead (Pb) in the freshwater environment are hampered by insufficient data on chronic toxicity and bioavailability to unicellular green algae. Here, we first performed comparative chronic (72-h) toxicity tests with three algal species in medium at pH 6, containing 4mg fulvic acid (FA)/L and containing organic phosphorous (P), i.e. glycerol-2-phosphate, instead of PO4(3-) to prevent lead-phosphate mineral precipitation. Pseudokirchneriella subcapitata was 4-fold more sensitive to Pb than Chlorella kesslerii, with Chlamydomonas reinhardtii in the middle. The influence of medium physico-chemistry was therefore investigated in detail with P. subcapitata. In synthetic test media, higher concentrations of fulvic acid or lower pH protected against toxicity of (filtered) Pb to P. subcapitata, while effects of increased Ca or Mg on Pb toxicity were less clear. When toxicity was expressed on a free Pb(2+) ion activity basis, a log-linear, 260-fold increase of toxicity was observed between pH 6.0 and 7.6. Effects of fulvic acid were calculated to be much more limited (1.9-fold) and were probably even non-existent (depending on the affinity constant for Pb binding to fulvic acid that was used for calculating speciation). A relatively simple bioavailability model, consisting of a log-linear pH effect on Pb(2+) ion toxicity linked to the geochemical speciation model Visual Minteq (with the default NICA-Donnan description of metal and proton binding to fulvic acid), provided relatively accurate toxicity predictions. While toxicity of (filtered) Pb varied 13.7-fold across 14 different test media (including four Pb-spiked natural waters) with widely varying physico-chemistry (72h-EC50s between 26.6 and 364μg/L), this bioavailability model displayed mean and maximum prediction errors of only 1.4 and 2.2-fold, respectively, thus indicating the potential usefulness of this bioavailability model to reduce uncertainty in site-specific risk assessment. A model-based comparison with other species indicated that the sensitivity difference between P. subcapitata and two of the most chronically Pb-sensitive aquatic invertebrates (the crustacean Ceriodaphnia dubia and the snail Lymnaea stagnalis) is strongly pH dependent, with P. subcapitata becoming the most sensitive of the three at pH > 7.4. This indicates that inter-species differences in Pb bioavailability relationships should be accounted for in risk assessment and in the derivation of water quality criteria or environmental quality standards for Pb. The chronic toxicity data with three algae species and the bioavailability model presented here will help to provide a stronger scientific basis for evaluating ecological effects of Pb in the freshwater environment.
Authors:
K A C De Schamphelaere; C Nys; C R Janssen
Related Documents :
23382763 - Respiratory knowledge discovery utilising expertise.
19429213 - The generality of empirical and theoretical explanations of behavior.
18531053 - Model-based algorithms for detecting damage in ultrasonic nondestructive evaluation mea...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-7-15
Journal Detail:
Title:  Aquatic toxicology (Amsterdam, Netherlands)     Volume:  155C     ISSN:  1879-1514     ISO Abbreviation:  Aquat. Toxicol.     Publication Date:  2014 Jul 
Date Detail:
Created Date:  2014-8-4     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8500246     Medline TA:  Aquat Toxicol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  348-359     Citation Subset:  -    
Copyright Information:
Copyright © 2014. Published by Elsevier B.V.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Hypocholesterolaemic pharmaceutical simvastatin disrupts reproduction and population growth of the a...
Next Document:  Mobility of a conserved tyrosine residue controls isoform-dependent enzyme-inhibitor interactions in...