Document Detail

Towards stable catalysts by controlling collective properties of supported metal nanoparticles.
MedLine Citation:
PMID:  23142841     Owner:  NLM     Status:  Publisher    
Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al(2)O(3) catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.
Gonzalo Prieto; Jovana Zečević; Heiner Friedrich; Krijn P de Jong; Petra E de Jongh
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-11
Journal Detail:
Title:  Nature materials     Volume:  -     ISSN:  1476-1122     ISO Abbreviation:  Nat Mater     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101155473     Medline TA:  Nat Mater     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, NL-3584 CG Utrecht University, The Netherlands.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  A full-parameter unidirectional metamaterial cloak for microwaves.
Next Document:  P2-Na(x)VO(2) system as electrodes for batteries and electron-correlated materials.