Document Detail

Tolerance of pupae and pharate adults of Callosobruchus subinnotatus Pic (Coleoptera: Bruchidae) to modified atmospheres: a function of metabolic rate.
MedLine Citation:
PMID:  12770246     Owner:  NLM     Status:  Publisher    
Three developmental stages (pupae, early pharate and late pharate adults) of Callosobruchus subinnotatus (Pic.) were investigated for their tolerance or susceptibility to four modified atmospheres. Two of these atmospheres were hypercarbic and two were hypoxic. The hypercarbic atmospheres were found to cause mortality earlier than hypoxic atmospheres. Late pharate adults died earlier than pupae or early pharate adults. Late pharate adults that survived the exposure took a longer time to eclose than the pupae or early pharate adult.Using high resolution microrespirometric techniques, it was possible to record the oxygen consumption rate and CO(2) output of different developmental stages in air. The metabolic rate was determined manometrically as the oxygen uptake rate at an ambient temperature of 25 degrees C. The oxygen uptake rate differed significantly between groups of 20 individuals of different stages (p<0.01; t-test). The lowest rate of oxygen uptake (510.6+/-52.2 &mgr;l g(-1) h(-1)) was recorded in pupae. Higher oxygen uptake rates were found in early pharate adults (668.4+/-45.6 &mgr;l g(-1) h(-1)) and late pharate adults (1171.2+/-45.0 &mgr;l g(-1) h(-1)), and adult beetles (1310.4+/-53.4 &mgr;l g(-1) h(-1)). The patterns of CO(2) release were similar to those of oxygen uptake. CO(2) release was highest in eclosed adults and late pharate adults followed by early pharate adults, and lowest in pupae. The mode of CO(2) release ranged from continuous CO(2) release in pupae to discontinuous CO(2) release in late pharate and eclosed adults. Thus, high metabolic rates, and perhaps, in conjunction with discontinuous CO(2) of late pharate adults are responsible for their higher susceptibility to modified atmospheres than pupae and early pharate adults.
G N. Mbata; S K. Hetz; C Reichmuth; C Adler
Related Documents :
24696926 - Short-term versus long-term catheterization after vaginal prolapse surgery.
23550716 - Stroke volume-directed administration of hydroxyethyl starch or ringer's acetate in sit...
24349746 - Comparing the effect of preoperative administration of methylprednisolone and its admin...
24677986 - A55: clostridium difficile infection-associated reactive arthritis in a pediatric cohort.
7744116 - Diagnosis, treatment and follow-up of h.p.v.-c.i.n.
11883386 - Ketorolac, diclofenac, and ketoprofen are equally safe for pain relief after major surg...
Publication Detail:
Journal Detail:
Title:  Journal of insect physiology     Volume:  46     ISSN:  1879-1611     ISO Abbreviation:  J. Insect Physiol.     Publication Date:  2000 Feb 
Date Detail:
Created Date:  2003-May-28     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  2985080R     Medline TA:  J Insect Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  145-151     Citation Subset:  -    
Federal Biological Research Centre for Agriculture and Forestry, Institute for Stored Product Protection, Königin-Luise-Str. 19, 14195, Berlin, Germany
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gus...
Next Document:  Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyrip...