Document Detail

Thermally activated depinning motion of contact lines in pseudopartial wetting.
MedLine Citation:
PMID:  25122310     Owner:  NLM     Status:  In-Data-Review    
We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case. However, this apparent hysteresis exhibits original features. We observe very long transient regimes before steady state, up to several hundreds of seconds. Furthermore, in steady state, the velocities are nonzero, meaning that the contact line is not strongly pinned to the surface defects, but are very small. The velocity of the contact line tends to vanish near the equilibrium contact angle. These observations are consistent with the thermally activated depinning theory that has been proposed to describe partial wetting systems on disordered substrates and suggest that a single physical mechanism controls both the hysteresis (or the pinning) and the motion of the contact line. The proposed analysis leads to the conclusion that the depinning activated energy is lower with pseudopartial wetting systems than with partial wetting ones, allowing the direct observation of the thermally activated motion of the contact line.
Lingguo Du; Hugues Bodiguel; Annie Colin
Publication Detail:
Type:  Journal Article     Date:  2014-07-09
Journal Detail:
Title:  Physical review. E, Statistical, nonlinear, and soft matter physics     Volume:  90     ISSN:  1550-2376     ISO Abbreviation:  Phys Rev E Stat Nonlin Soft Matter Phys     Publication Date:  2014 Jul 
Date Detail:
Created Date:  2014-08-15     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101136452     Medline TA:  Phys Rev E Stat Nonlin Soft Matter Phys     Country:  United States    
Other Details:
Languages:  eng     Pagination:  012402     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Phase-field modeling of grain-boundary premelting using obstacle potentials.
Next Document:  Self-similarity and scaling of thermal shock fractures.