Document Detail

Theoretical investigation into optical and electronic properties of 1,8-naphthalimide derivatives.
MedLine Citation:
PMID:  23292321     Owner:  NLM     Status:  Publisher    
A series of 1,8-naphthalimide derivatives has been designed to explore their optical, electronic, and charge transport properties as charge transport and/or luminescent materials for organic light-emitting diodes (OLEDs). The frontier molecular orbitals (FMOs) analysis have shown that the vertical electronic transitions of absorption and emission are characterized as intramolecular charge transfer (ICT) for electron-donating and aromatic groups substituted derivatives. However, the ICT character of the electron-withdrawing substituted derivatives is not significant. The calculated results show that their optical and electronic properties are affected by the substituent groups in 4-position of 1,8-naphthalimide. Our results suggest that 1,8-naphthalimide derivatives with electron-donating -OCH(3) and -N(CH(3))(2) (1 and 2), electron-withdrawing -CN and-COCH(3) (3 and 4), 2-(thiophen-2-yl)thiophene (5), 2,3-dihydrothieno[3,4-b][1, 4]dioxine (6), 2-phenyl-1,3,4-oxadiazole (7), and benzo[c][1,2,5]thiadiazole (8) fragments are expected to be promising candidates for luminescent materials for OLEDs, particularly for 5 and 7. In addition, 3 and 7 can be used as promising hole transport materials for OLEDs. This study should be helpful in further theoretical investigations on such kind of systems and also to the experimental study for charge transport and/or luminescent materials for OLEDs.
Ruifa Jin; Shanshan Tang
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-8
Journal Detail:
Title:  Journal of molecular modeling     Volume:  -     ISSN:  0948-5023     ISO Abbreviation:  J Mol Model     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-7     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9806569     Medline TA:  J Mol Model     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
College of Chemistry and Chemical Engineering, Chifeng University, Chifeng, 024000, China,
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Enhancing and modulating the intrinsic acidity of imidazole and pyrazole through beryllium bonds.
Next Document:  DFT studies on the intrinsic conformational properties of non-ionic pyrrolysine in gas phase.