Document Detail


Testosterone abrogates TLR4 activation in prostate smooth muscle cells contributing to the preservation of a differentiated phenotype.
MedLine Citation:
PMID:  23280522     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Prostate smooth muscle cells (pSMCs) are capable of responding to inflammatory stimuli by secreting proinflammatory products, which causes pSMCs to undergo dedifferentiation. Although it has been proposed that androgens decrease proinflammatory molecules in many cells and under various conditions, the role of testosterone in the prostate inflammatory microenvironment is still unclear. Therefore, our aim was to evaluate if testosterone was able to modulate the pSMCs response to bacterial LPS by stimulating primary pSMC cultures, containing testosterone or vehicle, with LPS (1 or 10 µg/ml) for 24-48h. The LPS challenge induced pSMCs dedifferentiation as evidenced by a decrease of calponin and alpha smooth muscle actin along with an increase of vimentin in a dose-dependent manner, whereas testosterone abrogated these alterations. Additionally, an ultrastructural analysis showed that pSMCs acquired a secretory profile after LPS and developed proteinopoietic organelles, while pSMCs preincubated with testosterone maintained a more differentiated phenotype. Testosterone downregulated the expression of surface TLR4 in control cells and inhibited any increase after LPS treatment. Moreover, testosterone prevented IκB-α degradation and the LPS-induced NF-κB nuclear translocation. Testosterone also decreased TNFα and IL6 production by pSMCs after LPS as quantified by ELISA. Finally, we observed that testosterone inhibited the induction of pSMCs proliferation incited by LPS. Taken together, these results indicate that testosterone reduced the proinflammatory pSMCs response to LPS, with these cells being less reactive in the presence of androgens. In this context, testosterone might have a homeostatic role by contributing to preserve a contractile phenotype on pSMCs under inflammatory conditions. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.
Authors:
Carolina Leimgruber; Amado Alfredo Quintar; Luciana Noemí García; Juan Pablo Petiti; Ana Lucía de Paul; Cristina Alicia Maldonado
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-31
Journal Detail:
Title:  Journal of cellular physiology     Volume:  -     ISSN:  1097-4652     ISO Abbreviation:  J. Cell. Physiol.     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2013-1-2     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0050222     Medline TA:  J Cell Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Wiley Periodicals, Inc.
Affiliation:
Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Milestones in Pediatric Cardiology: Making Possible the Impossible.
Next Document:  Carcinogenic viruses and solid cancers without sufficient evidence of causal association.