Document Detail

Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme.
MedLine Citation:
PMID:  10433695     Owner:  NLM     Status:  MEDLINE    
The crystal structure analysis of the Fe-type nitrile hydratase from Rhodococcus sp. N-771 revealed the unique structure of the enzyme composed of the alpha- and beta-subunits and the unprecedented structure of the non-heme iron active center [Nagashima, S., et al. (1998) Nat. Struct. Biol. 5, 347-351]. A number of hydration water molecules were identified both in the interior and at the exterior of the enzyme. The study presented here investigated the roles of the hydration water molecules in stabilizing the tertiary and the quaternary structures of the enzyme, based on the crystal structure and the results from a laser light scattering experiment for the enzyme in solution. Seventy-six hydration water molecules between the two subunits significantly contribute to the alphabeta heterodimer formation by making up the surface shape, forming extensive networks of hydrogen bonds, and moderating the surface charge of the beta-subunit. In particular, 20 hydration water molecules form the extensive networks of hydrogen bonds stabilizing the unique structure of the active center. The amino acid residues hydrogen-bonded to those hydration water molecules are highly conserved among all known nitrile hydratases and even in the homologous enzyme, thiocyanate hydrolase, suggesting the structural conservation of the water molecules in the NHase family. The crystallographic asymmetric unit contained two heterodimers connected by 50 hydration water molecules. The heterotetramer formation in crystallization was clearly explained by the concentration-dependent aggregation state of NHase found in the light scattering measurement. The measurement proved that the dimer-tetramer equilibrium shifted toward the heterotetramer dominant state in the concentration range of 10(-2)-1.0 mg/mL. In the tetramer dominant state, 50 water molecules likely glue the two heterodimers together as observed in the crystal structure. Because NHase exhibits a high abundance in bacterial cells, the result suggests that the heterotetramer is physiologically relevant. In addition, it was revealed that the substrate specificity of this enzyme, recognizing small aliphatic substrates rather than aromatic ones, came from the narrowness of the entrance channel from the bulk solvent to the active center. This finding may give a clue for changing the substrate specificity of the enzyme. Under the crystallization condition described here, one 1,4-dioxane molecule plugged the channel. Through spectroscopic and crystallographic experiments, we found that the molecule prevented the dissociation of the endogenous NO molecule from the active center even when the crystal was exposed to light.
M Nakasako; M Odaka; M Yohda; N Dohmae; K Takio; N Kamiya; I Endo
Related Documents :
24147755 - Anion and solvent induced chirality inversion in macrocyclic lanthanide complexes.
21828495 - Transport properties and the large anisotropic magnetoresistance of cu(x)nbs(2) single ...
22886835 - Synthesis, structure, and reactivity of borole-functionalized ferrocenes.
23688305 - Photoluminescent 3d lanthanide-organic frameworks based on 2,5-dioxo-1,4-piperazinylbis...
15651785 - Catalytic asymmetric addition of alkylzinc and functionalized alkylzinc reagents to ket...
25014125 - Computational predictions of glass-forming ability and crystallization tendency of drug...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Biochemistry     Volume:  38     ISSN:  0006-2960     ISO Abbreviation:  Biochemistry     Publication Date:  1999 Aug 
Date Detail:
Created Date:  1999-09-03     Completed Date:  1999-09-03     Revised Date:  2006-11-15    
Medline Journal Info:
Nlm Unique ID:  0370623     Medline TA:  Biochemistry     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  9887-98     Citation Subset:  IM    
Precursory Research for Embryonic Science and Technology (PRESTO), The University of Tokyo, Japan.
Data Bank Information
Bank Name/Acc. No.:
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Amino Acid Sequence
Binding Sites
Crystallography, X-Ray
Enzyme Stability
Heme / metabolism
Hydro-Lyases / chemistry*,  metabolism
Iron / chemistry*,  metabolism
Models, Molecular
Molecular Sequence Data
Protein Conformation
Protein Structure, Tertiary
Rhodococcus / enzymology*
Scattering, Radiation
Substrate Specificity
Water / chemistry*
Reg. No./Substance:
0/Solutions; 0/Solvents; 14875-96-8/Heme; 7439-89-6/Iron; 7732-18-5/Water; EC 4.2.1.-/Hydro-Lyases; EC 4.2.1.-/nitrile hydratase

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Crystal structure of human quinone reductase type 2, a metalloflavoprotein.
Next Document:  Investigation of the structural stability of cardiotoxin analogue III from the Taiwan cobra by hydro...