Document Detail

Takayasu's arteritis is associated with HLA-B*52, but not with HLA-B*51, in Turkey.
Jump to Full Text
MedLine Citation:
PMID:  22309845     Owner:  NLM     Status:  MEDLINE    
INTRODUCTION: HLA-B*51 and HLA-B*52 are two close human leukocyte antigen (HLA) allele groups with minor amino acid differences. However, they are associated with two different vasculitides (HLA-B*51 in Behçet's disease and HLA-B*52 in Takayasu's arteritis (TAK)) and with major clinical and immunological differences. In this study, we aimed to screen a large cohort of TAK patients from Turkey for the presence of HLA-B*51 and HLA-B*52 as susceptibility and severity factors.
METHODS: TAK patients (n = 330) followed at a total of 15 centers were included in the study. The mean age of the patients was 37.8 years, and 86% were women. DNA samples from the patients and healthy controls (HC; n = 210) were isolated, and the presence of HLA-B*51 or HLA-B*52 was screened for by using PCR with sequence-specific primers.
RESULTS: We found a significant association of HLA-B*52 with TAK (20.9% vs HC = 6.7%, P = 0.000, OR = 3.7, 95% CI = 2.02 to 6.77). The distribution of HLA-B*51 did not differ between TAK patients and HCs (22.7% vs 24.8%, OR = 0.9, 95% CI = 0.60 to 1.34). The presence of HLA-B*52 decreased in late-onset patients (> 40 years of age; 12.0%, P = 0.024, OR = 0.43, 95% CI = 0.20 to 0.91). Patients with angiographic type I disease with limited aortic involvement also had a lower presence of HLA-B*52 compared to those with all other disease subtypes (13.1% vs 26%, P = 0.005, OR = 0.43, 95% CI = 0.23 to 0.78).
CONCLUSIONS: In this study, the previously reported association of TAK with HLA-B*52 in other populations was confirmed in patients from Turkey. The functional relevance of HLA-B*52 in TAK pathogenesis needs to be explored further.
Ziver Sahin; Muge Bıcakcıgil; Kenan Aksu; Sevil Kamali; Servet Akar; Fatos Onen; Omer Karadag; Zeynep Ozbalkan; Askin Ates; Huseyin Te Ozer; Vuslat Yilmaz; Emire Seyahi; Mehmet A Ozturk; Ayse Cefle; Veli Cobankara; A Mesut Onat; Ercan Tunc; Nursen Düzgün; Sibel Z Aydin; Neslihan Yilmaz; İzzet Fresko; Yasar Karaaslan; Sedat Kiraz; Nurullah Akkoc; Murat Inanc; Gokhan Keser; F Aytul Uyar; Haner Direskeneli; Güher Saruhan-Direskeneli;
Related Documents :
18304465 - Serum hyaluronan levels in oral cancer patients.
1418025 - Elevated serum levels of soluble interleukin-2 receptor in patients with wegener's gran...
12104095 - The evaluation of oxidative stress in patients with chronic renal failure.
18072635 - Frequency of raised serum ige level in childhood atopic dermatitis.
15895895 - Post-treatment residual tissue in idiopathic retroperitoneal fibrosis: active residual ...
2178915 - Treatment of postural hypotension. a review.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-02-06
Journal Detail:
Title:  Arthritis research & therapy     Volume:  14     ISSN:  1478-6362     ISO Abbreviation:  Arthritis Res. Ther.     Publication Date:  2012  
Date Detail:
Created Date:  2012-07-04     Completed Date:  2012-12-17     Revised Date:  2013-06-26    
Medline Journal Info:
Nlm Unique ID:  101154438     Medline TA:  Arthritis Res Ther     Country:  England    
Other Details:
Languages:  eng     Pagination:  R27     Citation Subset:  IM    
Department of Physiology, Istanbul University, Istanbul Faculty of Medicine, Capa 34093, Istanbul, Turkey.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Case-Control Studies
Chi-Square Distribution
Gene Frequency
Genetic Predisposition to Disease / genetics*
HLA-B51 Antigen / genetics*
HLA-B52 Antigen / genetics*
Middle Aged
Odds Ratio
Takayasu Arteritis / genetics*
Reg. No./Substance:
0/HLA-B51 Antigen; 0/HLA-B52 Antigen

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Arthritis Res Ther
Journal ID (iso-abbrev): Arthritis Res. Ther
ISSN: 1478-6354
ISSN: 1478-6362
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2012 Sahin et al.; licensee BioMed Central Ltd.
Received Day: 17 Month: 9 Year: 2011
Revision Received Day: 12 Month: 1 Year: 2012
Accepted Day: 6 Month: 2 Year: 2012
Print publication date: Year: 2012
Electronic publication date: Day: 6 Month: 2 Year: 2012
Volume: 14 Issue: 1
First Page: R27 Last Page: R27
ID: 3392822
Publisher Id: ar3730
PubMed Id: 22309845
DOI: 10.1186/ar3730

Takayasu's arteritis is associated with HLA-B*52, but not with HLA-B*51, in Turkey
Ziver Sahin1 Email:
Muge Bıcakcıgil2 Email:
Kenan Aksu3 Email:
Sevil Kamali4 Email:
Servet Akar5 Email:
Fatos Onen5 Email:
Omer Karadag6 Email:
Zeynep Ozbalkan7 Email:
Askin Ates7 Email:
Huseyin TE Ozer8 Email:
Vuslat Yilmaz1 Email:
Emire Seyahi9 Email:
Mehmet A Ozturk10 Email:
Ayse Cefle11 Email:
Veli Cobankara12 Email:
A Mesut Onat13 Email:
Ercan Tunc14 Email:
Nursen Düzgün15 Email:
Sibel Z Aydin16 Email:
Neslihan Yilmaz16 Email:
İzzet Fresko9 Email:
Yasar Karaaslan7 Email:
Sedat Kiraz6 Email:
Nurullah Akkoc5 Email:
Murat Inanc4 Email:
Gokhan Keser3 Email:
F Aytul Uyar1 Email:
Haner Direskeneli16 Email:
Güher Saruhan-Direskeneli1 Email:
1Department of Physiology, Istanbul University, Istanbul Faculty of Medicine, Capa 34093, Istanbul, Turkey
2Department of Rheumatology, Yeditepe University, Faculty of Medicine, Ankara Cad No:102/104, Kozyatagı 34752, Istanbul, Turkey
3Department of Rheumatology, Ege University, Faculty of Medicine, Ankara Asfalti Uzeri, Bornova 35100, Izmir, Turkey
4Department of Rheumatology, Istanbul University, Istanbul Faculty of Medicine, Capa 34093, Istanbul, Turkey
5Department of Rheumatology, Dokuz Eylül University, Faculty of Medicine, Dokuz Eylul Universitesi Saglık Yerleskesi, Inciraltı 35340, Izmir, Turkey
6Department of Rheumatology, Hacettepe University, Faculty of Medicine, Sihhiye 06100, Ankara, Turkey
7Department of Rheumatology, Ankara Numune Training and Research Hospital, Talatpasa Bulvarı, No:5, Altındag 06100, Ankara, Turkey
8Department of Rheumatology, Cukurova University, Faculty of Medicine, Balcalı, Sarıcam 01330, Adana, Turkey
9Department of Rheumatology, Istanbul University, Cerrahpaşa Faculty of Medicine, Kocamustafapaşa Cad. No: 124, Cerrahpaşa 34098, Istanbul, Turkey
10Department of Rheumatology, Gazi University, Faculty of Medicine, Besevler 06500, Ankara, Turkey
11Department of Rheumatology, Kocaeli University, Faculty of Medicine, Eski İstanbul Yolu, Umuttepe Yerleşkesi 41380, Kocaeli, Turkey
12Department of Rheumatology, Pamukkale University Faculty of Medicine, Üniversite Caddesi Kınıklı Kampüsü 20020, Denizli, Turkey
13Department of Rheumatology, Gaziantep University, Faculty of Medicine, Sahinbey Araştırma Hastanesi 27310, Gaziantep, Turkey
14Department of Rheumatology, Suleyman Demirel University, Faculty of Medicine, Doğu Kampüsü Morfoloji Binası Kat:2 32260, Isparta, Turkey
15Department of Rheumatology, Ankara University, Faculty of Medicine, Morfoloji Yerleşkesi, Sıhhıye 06100, Ankara, Turkey
16Department of Rheumatology, Marmara University, Faculty of Medicine, Mimar Sinan Caddesi, No: 41, Pendik 34890, Istanbul, Turkey


Takayasu's arteritis (TAK), also known as "pulseless disease," is a chronic granulomatous panarteritis characterized by the involvement of large vessels, especially the aorta and its major branches [1,2]. Although the etiology of TAK is still unknown, infectious agents, genetic factors and autoimmunity are thought to play a major role in its pathogenesis [3]. Cell-mediated autoimmunity has been implicated in the physiopathology of vascular cell injury in TAK. In addition to γδ T cells, natural killer (NK) cells and macrophages, tissue specimens from the aortas of TAK patients are infiltrated with T cells that have a restricted T-cell repertoire, which is typical of antigen-induced proliferation [4-6].

Evidences of genetic susceptibility to TAK have previously been demonstrated for SNPs of cytokine genes such as IL-2, IL-6 and IL-12 and the NFKBIL1 promoter region [7,8], but not with autoimmunity associated genes such as PTPN22 [9] and PDCD1 [10]. Genes encoding human leukocyte antigen (HLA) are highly polymorphic, show remarkable ethnic and geographic differences in allele and haplotype frequencies and are natural candidates for genetic susceptibility to immune and inflammatory diseases. Although some associations with class II alleles such as HLA-DRB*1301 have been reported, studies from mainly East Asian countries have demonstrated HLA-B*52 as the main risk factor in the HLA region [11,12]. However, this association has not been confirmed in North American and Arab populations [13,14].

HLA-B*51 and HLA-B*52 are two HLA-B allele groups with only two amino acid differences [15]. However, HLA-B*51 is associated with a phenotypically separate vasculitis, namely, Behçet's disease [16]. Previously, associations of both major HLA-B subtypes HLA-B*51 and HLA-B*52 with TAK have been shown only in an Indian population [17]. On the basis of this background, we screened patients with TAK in Turkey for the presence of HLA-B*51 and HLA-B*52.

Materials and methods

The study was designed as a case-control study. We enrolled 330 patients with TAK (42 men and 288 women, mean age 38.9 ± 12.2 years) of mixed ethnic origin from Turkey. The patients were referred from 15 tertiary university and state hospital rheumatology centers in Turkey. Patients were classified according to the 1990 American College of Rheumatology criteria for TAK [18]. According to the angiographic classification scheme defined at the International Conference on Takayasu's Arteritis in Tokyo, 39.4% (n = 130) of the patients had type I vessel involvement, 6.4% had type IIa (n = 21), 2.7% had type IIb (n = 9), 3.9% had type III (n = 13), 4.5% had type IV (n = 15) and 43% had type V (n = 142) [19]. A surgical procedure was performed in 21.1% of the patients, with 11.6% done after immunosuppressive (IS) therapy. Patients with late-onset (> 40 years of age) disease was present in 23.8% of the patients. Corticosteroid treatment was given to 95% of the patients, standard first-line ISs (methotrexate, azatioprine, leflunomide or cyclophosphamide) were administered to 94.5% and second-line ISs (TNF antagonists) were given to 3.5%.

To evaluate HLA-disease phenotype associations, our study group proposed a consensus definition of "refractory disease" for TAK. Patients with "angiographic or clinical progression despite treatment" or any of the following characteristics were accepted to have "refractory" disease: corticosteroid dose > 7.5 mg/day after 6 months of treatment, despite the administration of conventional ISs (methotrexate, azatioprine, leflunomide or cyclophosphamide); new surgery due to persistent disease activity; frequent attacks (more than three yearly); or death associated with disease activity. On the basis of this definition, 27.4% (n = 114) of the patients with sufficient follow-up for analysis had refractory disease. Eighteen patients (5.9%) died during follow-up.

A total of 210 healthy blood donors (97 men and 113 women, mean age 32.2 ± 10.9 years) with the same mixed ethnic origin from Turkey were recruited for participation as healthy controls (HCs). All patients and controls were enrolled with the approval of the Marmara University Medical School Local Ethics Committee and provided their informed consent.


For genotyping, cellular DNA was isolated from peripheral blood using standard procedures. For the determination of HLA-B*52 and HLA-B*51 alleles, DNA was amplified using the forward primers HLA 192 and HLA 193, respectively, and reverse primer HLA 216 (for both) for the specific product with another pair of primers was used as a control product [20]. PCR amplification was carried out in NH4 buffer with 1.3 mM MgCl2, 0.2 μM deoxyribonucleotide triphosphate, 0.5 μM of each primer, 60 ng of genomic DNA and 1 IU of Taq polymerase. The cycling parameters were as follows: an initial denaturation step of 2 minutes at 95°C; 5 cycles of 20 seconds at 95°C, 60 seconds at 64°C and 20 seconds at 72°C followed by 25 cycles of 20 seconds at 95°C, 60 seconds at 63°C and 20 seconds at 72°C; and a final extension step of 2 minutes at 72°C. Products were run on 1.5% agarose gel stained with ethidium bromide.

Statistical analysis

HLA alleles in TAK patients were compared with those of the HCs and within the patient group. The strength of the association was expressed by the OR, and the statistical significance was examined by χ2 test.


We found a significant association of HLA-B*52 with TAK (20.9% of patients (69 of 330) vs 6.7% of HCs (14 of 210), P = 0.000, OR = 3.7, 95% CI = 2.02 to 6.77). The association of HLA-B*52 with TAK was noted in women (21.5% vs 7.1%, P = 0.000, OR = 3.6, 95% CI = 1.66 to 7.79), but did not reach significance in men (16.7% vs 6.2%, P = 0.063). The distribution of HLA-B*51 did not differ between TAK patients and controls (22.7% of patients (75 of 330) vs 24.8% of HCs (52 of 210), P = 0.3, OR = 0.9, 95% CI = 0.60 to 1.34).

When we investigated HLA-B*52 presence according to the onset of disease, a decreased presence of HLA-B*52 was observed in late-onset patients (> 40 years of age) (early onset 24.2% vs late onset 12.0%, P = 0.024, OR = 0.43, 95% CI = 0.20 to 0.91) (Table 1). We then investigated whether the presence of HLA-B*52 affects the disease phenotype. Although we observed that the frequency of HLA-B*52 was significantly higher in all disease subtypes than in HCs, a lower presence of HLA-B*52 was present in patients with type I disease (13.1%) (P = 0.005, OR = 0.43, 95% CI = 0.24 to 0.78) compared to all other types of vessel involvement (types IIa through V, 26%). Although the finding did not reach statistical significance, patients defined as having refractory disease also seemed to have a stronger association with HLA-B*52 (refractory 27.4% vs nonrefractory 18.1%, P = 0.84, OR = 1.68, 95% CI = 0.97 to 2.93). No association of surgery and IS drug requirement after surgery with HLA-B*52 presence was present (surgery HLA-B*52 13.6% vs 21.6%, P = 0.092, OR = 0.51, 95% CI = 0.24 to 1.09; IS after surgery HLA-B*52 19.4% vs 21.6, P = 1.0). No association of HLA-B*51 presence was observed with gender, age, disease phenotype, treatment or any other clinical feature of TAK (Table 1).


Researchers in various previous studies have demonstrated a strong association of HLA-B*52 in TAK. Our first study from Turkey, with a relatively large sample, has confirmed this association. No association of HLA-B*51 with TAK was present in this series.

The highest presence of HLA-B*52 in TAK was previously reported in a Japanese population (41%, RR = 2.2) [11]. In Japan, HLA-B*52 is also associated with aortic insufficiency, ischemic heart disease and pulmonary involvement [21]. We observed no association with these clinical features in our series. However, the routine use of ISs in our patients might have affected our results. Features of a more severe and refractory disease are also associated with HLA-B*52 presence in Japan: higher blood pressure, acute phase response and corticosteroid requirement [22,23]. Interestingly, we also observed a mild association of HLA-B*52 with more extensive aortic disease and refractoriness to treatment, which might suggest an association of HLA-B*52 with a more severe disease spectrum.

Studies from East Asian countries such as Korea, Thailand and India confirmed a HLA-B*52 association with TAK, though usually with a lower prevalence than Japan (Thailand and Korea both 15%) [12,24]. The lower presence of HLA-B*52 in patients with TAK might be associated with the lower prevalence in the background HCs (HLA-B*52 in HCs in Japan 23%, in Thailand 2.3% and in Turkey 6.7%). Association of HLA-B*52 with TAK has also been reported in other ethnic groups, such as Mexicans and Greeks [25,26]. Lack of association in North America and Arab populations requires confirmatory studies, as the number of samples has been too low in these studies to draw any conclusions [13,14].

Late-onset TAK (> 40 years of age) poses difficulties in the differential diagnosis from giant cell arteritis (GCA), and the two diseases are suggested to be a continuum with overlapping features [27]. In this context, HLA-B*52 might be a specific genetic susceptibility factor for classic early-onset TAK, as no association of GCA with HLA-B*52 has been reported previously [28].

Associations with other HLA genes in patients from Korea (HLA-A*3001, HLA-DRB1*1502) and Mexico (HLA-DRB1*1301) have also been reported; however, they have not been confirmed in other populations [29,30]. Although regions close to HLA-B, such as major histocompatibility complex class I-related chain A, have also been investigated for linkage disequilibrium in Japan, no further association has been confirmed [31]. An association of HLA-B*3901 with TAK has also been reported in studies conducted in Japan and Mexico [32,33]. However, this association has not been confirmed in India, Greece or Korea [17,26,29]. We also previously looked at HLA-B*39 in a subset of our population and observed no association with TAK (2.9% vs. 3.6%) (unpublished observation, M. Bicakcigil, et al).

The lack of association of HLA-B*51 with TAK, a granulomatous vasculitis, has important implications for the pathogenesis of TAK. As HLA-B*51 (a very common allele in Turkey) is associated only with Behçet's disease, an inflammatory disease involving the activation of both innate and adaptive immunity, peptide-binding differences of HLA-B*51 and HLA-B*52 seem to predispose patients to very different clinical phenotypes of vasculitis [34]. Moreover, the association of HLA-B*52 seem to be weaker in Turkish TAK patients compared to the HLA-B*51-Behçet's association, suggesting that other genetic factors might have a larger effect on disease susceptibility in TAK [35].

Our study has some limitations. All patients were followed in tertiary centers and may reflect a more severe disease spectrum. As TAK is a rare disease, however, we think that most patients suspected or diagnosed as having TAK are referred to specialized centers in Turkey. The gender ratio among TAK patients and HCs was not well-matched in our study. Finally, we chose to study only the HLA-B types previously associated with TAK, and other alleles need to be studied as well.


We have confirmed the association of the HLA-B*52 allele with TAK in patients in Turkey. The negative association with late-onset and milder forms of the disease needs to be confirmed in other populations.


GCA: giant cell arteritis; HC: healthy control; HLA: human leukocyte antigen; IS: immunosuppressive; NK: natural killer; PCR: polymerase chain reaction; SNP, single-nucleotide polymorphism; SSP: sequence-specific primer; TAK: Takayasu's arteritis; TNF, tumor necrosis factor.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ZS participated in patient data collection, performed genotyping, interpreted and analyzed the data and wrote the manuscript. MB participated in design of the study, sample and data collection and genotyping. KA, SK, SA, FO, OK, ZO, AA, HTEO, ES, MAO, AC, VC, AMO, ET, ND, SZA, NY, IF, YK, SK NA, MI and GK participated in sample and data collection from the patient group, interpretation of the data and manuscript preparation. VY and FAU participated in sample and data collection from healthy controls and in genotyping. HD and GSD designed and coordinated the study, analyzed and interpreted the data and wrote the manuscript. All authors read and approved the final manuscript for publication.


This study is funded by Istanbul (BAP) and Marmara University (BAPKO) Research Funds. The authors thank G Mumcu for her assistance with statistical analysis.

Mason JC,Takayasu arteritis: advances in diagnosis and managementNat Rev RheumatolYear: 2010640641510.1038/nrrheum.2010.8220596053
Bicakcigil M,Aksu K,Kamali S,Ozbalkan Z,Ates A,Karadag O,Ozer HT,Seyahi E,Akar S,Onen F,Cefle A,Aydin SZ,Yilmaz N,Onat AM,Cobankara V,Tunc E,Ozturk MA,Fresko I,Karaaslan Y,Akkoc N,Yücel AE,Kiraz S,Keser G,Inanc M,Direskeneli H,Takayasu's arteritis in Turkey: clinical and angiographic features of 248 patientsClin Exp RheumatolYear: 2009271 Suppl 52S59S6419646348
Arnaud L,Kahn JE,Girszyn N,Piette AM,Bletry O,Takayasu's arteritis: an update on physiopathologyEur J Intern MedYear: 20061724124610.1016/j.ejim.2005.12.00216762772
Seko Y,Minota S,Kawasaki A,Shinkai Y,Maeda K,Yagita H,Okumura K,Sato O,Takagi A,Tada Y,Yazaki Y,Perforin-secreting killer cell infiltration and expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu's arteritisJ Clin InvestYear: 19949375075810.1172/JCI1170297906697
Seko Y,Sato O,Takagi A,Tada Y,Matsuo H,Yagita H,Okumura K,Yazaki Y,Restricted usage of T-cell receptor Vα-Vβ genes in infiltrating cells in aortic tissue of patients with Takayasu's arteritisCirculationYear: 199693178817908635256
Inder SJ,Bobryshev YV,Cherian SM,Wang AY,Lord RS,Masuda K,Yutani C,Immunophenotypic analysis of the aortic wall in Takayasu's arteritis: involvement of lymphocytes, dendritic cells and granulocytes in immuno-inflammatory reactionsCardiovasc SurgYear: 2000814114810.1016/S0967-2109(99)00100-310737351
Saruhan-Direskeneli G,Biçakçigil M,Yilmaz V,Kamali S,Aksu K,Fresko I,Akkoç N,Kiraz S,Ozer HT,Tunç E,Yücel E,Karaarslan Y,Uyar FA,Doganavşargil E,Inanc M,Direskeneli H,Rheumatology Education and Research Society Vasculitis Study GroupInterleukin (IL)-12, IL-2, and IL-6 gene polymorphisms in Takayasu's arteritis from TurkeyHum ImmunolYear: 20066773574010.1016/j.humimm.2006.06.00317002904
Shibata H,Yasunami M,Obuchi N,Takahashi M,Kobayashi Y,Numano F,Kimura A,Direct determination of single nucleotide polymorphism haplotype of NFKBIL1 promoter polymorphism by DNA conformation analysis and its application to association study of chronic inflammatory diseasesHum ImmunolYear: 20066736337310.1016/j.humimm.2006.03.02216720219
Sahin N,Aksu K,Kamali S,Bicakcigil M,Ozbalkan Z,Fresko I,Ozer H,Akar S,Onat AM,Cobankara V,Kiraz S,Oztürk MA,Tunç E,Yücel E,Ates A,Keser G,Inanc M,Direskeneli H,Saruhan-Direskeneli G,for RAED Vasculitis Study GroupPTPN22 gene polymorphism in Takayasu's arteritisRheumatology (Oxford)Year: 20084763463510.1093/rheumatology/ken10618375974
Direskeneli H,Tuna-Erdogan E,Gündüz F,Bandurska-Luque A,Alparslan B,Kebe M,Uyar FA,Bicakcigil M,Aksu K,Kamali S,Ozbalkan Z,Ates A,Karadag O,Ozer HT,Akar S,Onen F,Seyahi E,Onat AM,Aydin SZ,Yilmaz N,Cefle A,Cobankara V,Tunç E,Oztürk MA,Fresko I,Karaaslan Y,Akkoç N,Yücel AE,Kiraz S,Keser G,Inanc M,Saruhan-Direskeneli G,PDCD1 polymorphisms are not associated with Takayasu's arteritis in TurkeyClin Exp Rheumatol in press .
Kimura A,Kitamura H,Date Y,Numano F,Comprehensive analysis of HLA genes in Takayasu arteritis in JapanInt J CardiolYear: 199654SupplS61S699119528
Charoenwongse P,Kangwanshiratada O,Boonnam R,Hoomsindhu U,The association between the HLA antigens and Takayasu's arteritis in Thai patientsInt J CardiolYear: 199866Suppl 1S117S1209951810
Khraishi MM,Gladman DD,Dagenais P,Fam AG,Keystone EC,HLA antigens in North American patients with Takayasu arteritisArthritis RheumYear: 19923557357510.1002/art.17803505141349480
Sattar MA,White AG,Eklof B,Fenech FF,Takayasu's disease in ArabsPostgrad Med JYear: 19856138739010.1136/pgmj.61.715.3872862623
Falk K,Rötzschke O,Takiguchi M,Gnau V,Stevanović S,Jung G,Rammensee HG,Peptide motifs of HLA-B51, -B52 and -B78 molecules, and implications for Behçet's diseaseInt ImmunolYear: 1995722322810.1093/intimm/7.2.2237734418
Remmers EF,Cosan F,Kirino Y,Ombrello MJ,Abaci N,Satorius C,Le JM,Yang B,Korman BD,Cakiris A,Aglar O,Emrence Z,Azakli H,Ustek D,Tugal-Tutkun I,Akman-Demir G,Chen W,Amos CI,Dizon MB,Kose AA,Azizlerli G,Erer B,Brand OJ,Kaklamani VG,Kaklamanis P,Ben-Chetrit E,Stanford M,Fortune F,Ghabra M,Ollier WE,et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet's diseaseNat GenetYear: 20104269870210.1038/ng.62520622878
Mehra NK,Jaini R,Balamurugan A,Kanga U,Prabhakaran D,Jain S,Talwar KK,Sharma BK,Immunogenetic analysis of Takayasu arteritis in Indian patientsInt J CardiolYear: 199866Suppl 1S127S1339951812
Arend WP,Michel BA,Bloch DA,Hunder GG,Calabrese LH,Edworthy SM,Fauci AS,Leavitt RY,Lie JT,Lightfoot RW Jr,Masi AT,McShane DJ,Mills JA,Stevens MB,Wallace SL,Zvaifler NJ,The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritisArthritis RheumYear: 199033112911341975175
Hata A,Noda M,Moriwaki R,Numano F,Angiographic findings of Takayasu arteritis: new classificationInt J CardiolYear: 199654S155S1639119518
Bunce M,O'Neill CM,Barnardo MC,Krausa P,Browning MJ,Morris PJ,Welsh KI,Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP)Tissue AntigensYear: 19954635536710.1111/j.1399-0039.1995.tb03127.x8838344
Kitamura H,Kobayashi Y,Kimura A,Numano F,Association of clinical manifestations with HLA-B alleles in Takayasu arteritisInt J CardiolYear: 199866Suppl 1S121S1269951811
Moriwaki R,Numano F,Takayasu arteritis: follow-up studies for 20 yearsHeart Vessels SupplYear: 1992713814510.1007/BF017445601360960
Numano F,Ohta N,Sasazuki T,HLA and clinical manifestations in Takayasu diseaseJpn Circ JYear: 19824618418910.1253/jcj.46.1846120251
Yajima M,Moriwaki R,Numano F,Park YB,Cho YD,Comparative studies between Japanese and Korean patients: comparison of the findings of angiography, HLA-Bw52, and clinical manifestationsHeart Vessels SupplYear: 1992710210510.1007/BF017445531360952
Vargas-Alarcón G,Flores-Domínguez C,Hernández-Pacheco G,Zuñiga J,Gamboa R,Soto ME,Granados J,Reyes PA,Immunogenetics and clinical aspects of Takayasu's arteritis patients in a Mexican Mestizo populationClin Exp RheumatolYear: 20011943944311491500
Karageorgaki ZT,Bertsias GK,Mavragani CP,Kritikos HD,Spyropoulou-Vlachou M,Drosos AA,Boumpas DT,Moutsopoulos HM,Takayasu arteritis: epidemiological, clinical, and immunogenetic features in GreeceClin Exp RheumatolYear: 2009271 Suppl 52S33S3919646344
Maksimowicz-McKinnon K,Clark TM,Hoffman GS,Takayasu arteritis and giant cell arteritis: a spectrum within the same disease?Medicine (Baltimore)Year: 20098822122610.1097/MD.0b013e3181af70c119593227
Gonzalez-Gay MA,Rueda B,Vilchez JR,Lopez-Nevot MA,Robledo G,Ruiz MP,Fernández O,Garcia-Porrua C,Gonzalez-Escribano MF,Martín J,Contribution of MHC class I region to genetic susceptibility for giant cell arteritisRheumatology (Oxford)Year: 20074643143410.1093/rheumatology/kel32417003171
Lee SW,Kwon OJ,Park MC,Oh HB,Park YB,Lee SK,HLA alleles in Korean patients with Takayasu arteritisClin Exp RheumatolYear: 200725S18S2217428358
Girona E,Yamamoto-Furusho JK,Cutiño T,Reyes P,Vargas-Alarcón G,Granados J,Alarcón-Segovia D,HLA-DR6 (possibly DRB1*1301) is associated with susceptibility to Takayasu arteritis in MexicansHeart VesselsYear: 19961127728010.1007/BF017471869248846
Kimura A,Kobayashi Y,Takahashi M,Ohbuchi N,Kitamura H,Nakamura T,Satoh M,Sasaoka T,Hiroi S,Arimura T,Akai J,Aerbajinai W,Yasukochi Y,Numano F,MICA gene polymorphism in Takayasu's arteritis and Buerger's diseaseInt J CardiolYear: 199866Suppl 1S107S1139951809
Yoshida M,Kimura A,Katsuragi K,Numano F,Sasazuki T,DNA typing of HLA-B gene in Takayasu's arteritisTissue AntigensYear: 19934287907903491
Vargas-Alarcón G,Zuñiga J,Gamboa R,Hernández-Pacheco G,Hesiquio R,Crúz D,Martínez-Baños D,Portal-Celhay C,Granados J,Reyes P,DNA sequencing of HLA-B alleles in Mexican patients with Takayasu arteritisInt J CardiolYear: 200075Suppl 1S117S12210980349
Direskeneli H,Autoimmunity vs autoinflammation in Behçet's disease: do we oversimplify a complex disorder?Rheumatology (Oxford)Year: 2006451461146510.1093/rheumatology/kel32916998234
Gül A,Uyar FA,Inanc M,Ocal L,Tugal-Tutkun I,Aral O,Koniçe M,Saruhan-Direskeneli G,Lack of association of HLA-B*51 with a severe disease course in Behçet's diseaseRheumatology (Oxford)Year: 20014066867210.1093/rheumatology/40.6.66811426025

[TableWrap ID: T1] Table 1 

Distribution of HLA-B*51 and HLA-B*52 allele groups in healthy controls and Takayasu's arteritis patientsa

Characteristics n HLA-B*52+ (%) P OR (95% CI) HLA-B*51+ (%) P
HC 210 14 (6.7) 52 (24.8)
 Men 97 6 (6.2) 23 (23.7)
 Women 113 8 (7.1) 29 (25.7)
TAK 330 69 (20.9) 0.000 3.7 (2.02 to 6.77) 75 (22.7) 0.64
 Men 42 7 (16.7) 0.063 12 (28.6) 0.53
 Women 288 62 (21.5) 0.000 3.6 (1.66 to 7.79) 63 (21.9) 0.43
Age at onset
 < 40 years 240 58 (24.2) 0.024 0.43 (0.20 to 0.91) 49 (20.4) 0.11
 ≤ 40 years 75 9 (12.0) 22 (29.3)
Angiographic subtypeb
 Type I 130 17 (13.1) 0.005 0.43 (0.23 to 0.78) 28 (21.5) 0.78
 Type Iia 21 8 (38.1) 6 (28.6)
 Type Iib 9 3 (33.3) 2 (22.2)
 Type III 13 5 (38.5) 3 (23.1)
 Type IV 15 3 (20.0) 1 (6.7)
 Type V 142 34 (23.9) 35 (24.6)
Surgery (all)
 Present 66 9 (13.6) 0.092 0.51 (0.24 to 1.09) 13 (19.7) 0.62
 Not present 246 58 (23.6) 57 (23.2)
Surgery after IS treatment
 Present 36 7 (19.4) 1.0 9 (25) 0.67
 Not present 273 59 (21.6) 60 (22.0)
Refractory disease
 Refractory 114 31 (27.4) 0.084 1.68 (0.97 to 2.93) 20 (17.5) 0.12
 Not refractory 193 35 (18.1) 49 (25.4)

aHC, healthy control; IS, immunosuppressive; TAK, Takayasu's arteritis. Subgroup analysis was performed between groups with or without known clinical features. bP vs other all other subtypes.

Article Categories:
  • Research Article

Previous Document:  The double-edged sword of Notch signaling in cancer.
Next Document:  Development and preliminary validation of a behavioral task of negative reinforcement underlying ris...