Document Detail

Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome.
MedLine Citation:
PMID:  23331845     Owner:  NLM     Status:  In-Data-Review    
BACKGROUND: Current practice for suspected acute coronary syndrome (ACS) involves troponin testing 10-12 hours after symptom onset to diagnose myocardial infarction (MI). Patients with a negative troponin can be investigated further with computed tomographic coronary angiography (CTCA) or exercise electrocardiography (ECG).
OBJECTIVES: We aimed to estimate the diagnostic accuracy of early biomarkers for MI, the prognostic accuracy of biomarkers for major adverse cardiac adverse events (MACEs) in troponin-negative patients, the diagnostic accuracy of CTCA and exercise ECG for coronary artery disease (CAD) and the prognostic accuracy of CTCA and exercise ECG for MACEs in patients with suspected ACS. We then aimed to estimate the cost-effectiveness of using alternative biomarker strategies to diagnose MI, and using biomarkers, CTCA and exercise ECG to risk-stratify troponin-negative patients.
DATA SOURCES: We searched MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations; Cumulative Index of Nursing and Allied Health Literature (CINAHL), EMBASE, Web of Science, Cochrane Central Database of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews (CDSR), NHS Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment database from 1985 (CTCA review) or 1995 (biomarkers review) to November 2010, reviewed citation lists and contacted experts to identify relevant studies.
REVIEW METHODS: Diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool and prognostic studies using a framework adapted for the project. Meta-analysis was conducted using Bayesian Markov chain Monte Carlo simulation. We developed a decision-analysis model to evaluate the cost-effectiveness of alternative biomarker strategies to diagnose MI, and the cost-effectiveness of biomarkers, CTCA or exercise ECG to risk-stratify patients with a negative troponin. Strategies were applied to a theoretical cohort of patients with suspected ACS. Cost-effectiveness was estimated as the incremental cost per quality-adjusted life-year (QALY) of each strategy compared with the next most effective, taking a health-service perspective and a lifetime horizon.
RESULTS: Sensitivity and specificity (95% predictive interval) were 77% (29-96%) and 93% (46-100%) for troponin I, 80% (33-97%) and 91% (53-99%) for troponin T (99th percentile threshold), 81% (50-95%) and 80% (26-98%) for quantitative heart-type fatty acid-binding protein (H-FABP), 68% (11-97%) and 92% (20-100%) for qualitative H-FABP, 77% (19-98%) and 39% (2-95%) for ischaemia-modified albumin and 62% (35-83%) and 83% (35-98%) for myoglobin. CTCA had 94% (61-99%) sensitivity and 87% (16-100%) specificity for CAD. Positive CTCA and positive-exercise ECG had relative risks of 5.8 (0.6-24.5) and 8.0 (2.3-22.7) for MACEs. In most scenarios in the economic analysis presentation, high-sensitivity troponin measurement was the most effective strategy with an incremental cost-effectiveness ratio (ICER) of less than the £20,000-30,000/QALY threshold (ICER £7487-17,191/QALY). CTCA appeared to be the most cost-effective strategy for patients with a negative troponin, with an ICER of £11,041/QALY. However, when a lower MACE rate was assumed, CTCA had a high ICER (£262,061/QALY) and the no-testing strategy was optimal.
LIMITATIONS: There was substantial variation between the primary studies and heterogeneity in their results. Findings of the economic model were dependent on assumptions regarding the value of detecting and treating positive cases.
CONCLUSIONS: Although presentation troponin has suboptimal sensitivity, measurement of a 10-hour troponin level is unlikely to be cost-effective in most scenarios compared with a high-sensitivity presentation troponin. CTCA may be a cost-effective strategy for troponin-negative patients, but further research is required to estimate the effect of CTCA on event rates and health-care costs.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.
S Goodacre; P Thokala; C Carroll; Jw Stevens; J Leaviss; M Al Khalaf; P Collinson; F Morris; P Evans; J Wang
Related Documents :
24111135 - Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and f...
24699335 - High-sensitivity cardiac troponin t and copeptin assays to improve diagnostic accuracy ...
8050035 - Cardiovascular effects of nacl microinjections into the nucleus of the solitary tract.
2595255 - Contraction of canine stomach and small bowel by intravenous administration of serotoni...
2240635 - Thoracic epidural anesthesia improves global and regional left ventricular function dur...
15816315 - Physical activity and quality of life: assessing the influence of activity frequency, i...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Health technology assessment (Winchester, England)     Volume:  17     ISSN:  2046-4924     ISO Abbreviation:  Health Technol Assess     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-01-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9706284     Medline TA:  Health Technol Assess     Country:  England    
Other Details:
Languages:  eng     Pagination:  1-188     Citation Subset:  IM    
School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  The effects of testosterone on ventilatory responses in men with obstructive sleep apnoea: a randomi...
Next Document:  Fluorescence diagnosis and photodynamic therapy for Bowen's disease treatment.