Document Detail

Synthesis and evaluation of novel F-18 labeled 4-aminoquinazoline derivatives: Potential PET imaging agents for tumor detection.
MedLine Citation:
PMID:  22704892     Owner:  NLM     Status:  Publisher    
Three novel (18)F-labeled 4-aminoquinazoline derivatives, N-(3-chloro-4-fluorophenyl)-6-(2-[(18)F]fluoroethoxy)-7-methoxyquinazolin-4-amine([(18)F]1), N-(3-ethynylphenyl)-6-(2-[(18)F]fluoroethoxy)-7-methoxyquinazolin-4-amine([(18)F]2), and N-(3-bromophenyl)-6-(2-[(18)F]fluoroethoxy)-7-methoxyquinazolin-4-amine([(18)F]3) were synthesized and radiolabeled by two-step reaction with overall radiochemical yield of 21-24% (without decay corrected). Then we carried out their biodistribution experiments in S180 tumor-bearing mice. Results showed that they had certain concentration accumulation in tumor and fast clearance from muscle and blood. It was encouraging that [(18)F]3 was competitive among three (18)F-labeled 4-aminoquinazoline derivatives in some aspects such as tumor/muscle uptake ratio reaching 7.70 at 60min post-injection, tumor/blood uptake ratio reaching 6.61 at 120min post-injection. So we compared radioactivity characteristics of [(18)F]3 with those of [(18)F]-FDG and L-[(18)F]-FET in the same animal model. The absolute radioactivity uptake of [(18)F]3 in tumor reached 3.31 at 60min p.i., which was slightly higher than [(18)F]-FDG (2.16) and L-[(18)F]-FET (2.75) at the same time phase. For [(18)F]3, tumor/muscle uptake ratio peaked 7.70 at 60min, which was obviously superior to those of [(18)F]-FDG and L-[(18)F]-FET at all time points. The tumor/brain uptake ratios of [(18)F]3 were 10.36, 17.42, 41.11 at 30min, 60min and 120min post-injection, respectively, and are much higher than those of L-[(18)F] FET (2.54, 2.92 and 2.95) and [(18)F]-FDG (0.61, 1.02 and 1.33) at the same time points. All these results indicate that [(18)F]3 is promising to become a potential PET tumor imaging agent.
Yurong Chen; Man Feng; Shilei Li; Jingli Xu; Hongyu Ning; Yong He; Xiao Wang; Rui Ding; Chuanmin Qi
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-5-24
Journal Detail:
Title:  Bioorganic & medicinal chemistry letters     Volume:  -     ISSN:  1464-3405     ISO Abbreviation:  -     Publication Date:  2012 May 
Date Detail:
Created Date:  2012-6-18     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9107377     Medline TA:  Bioorg Med Chem Lett     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier Ltd. All rights reserved.
Key laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Photoinduced DNA cleavage by anthracene based hydroxamic acids.
Next Document:  Response to chemotherapy is predictive in relation to longer overall survival in an individual patie...